summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--rax.c1801
-rw-r--r--rax.h164
-rw-r--r--redis.spec13
3 files changed, 5 insertions, 1973 deletions
diff --git a/rax.c b/rax.c
deleted file mode 100644
index 8764dd8..0000000
--- a/rax.c
+++ /dev/null
@@ -1,1801 +0,0 @@
-/* Rax -- A radix tree implementation.
- *
- * Copyright (c) 2017, Salvatore Sanfilippo <antirez at gmail dot com>
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * * Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * * Neither the name of Redis nor the names of its contributors may be used
- * to endorse or promote products derived from this software without
- * specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include <stdlib.h>
-#include <string.h>
-#include <assert.h>
-#include <stdio.h>
-#include <errno.h>
-#include <math.h>
-#include "rax.h"
-
-#ifndef RAX_MALLOC_INCLUDE
-#define RAX_MALLOC_INCLUDE "rax_malloc.h"
-#endif
-
-#include RAX_MALLOC_INCLUDE
-
-/* This is a special pointer that is guaranteed to never have the same value
- * of a radix tree node. It's used in order to report "not found" error without
- * requiring the function to have multiple return values. */
-void *raxNotFound = (void*)"rax-not-found-pointer";
-
-/* -------------------------------- Debugging ------------------------------ */
-
-void raxDebugShowNode(const char *msg, raxNode *n);
-
-/* Turn debugging messages on/off. */
-#if 0
-#define debugf(...) \
- do { \
- printf("%s:%s:%d:\t", __FILE__, __FUNCTION__, __LINE__); \
- printf(__VA_ARGS__); \
- fflush(stdout); \
- } while (0);
-
-#define debugnode(msg,n) raxDebugShowNode(msg,n)
-#else
-#define debugf(...)
-#define debugnode(msg,n)
-#endif
-
-/* ------------------------- raxStack functions --------------------------
- * The raxStack is a simple stack of pointers that is capable of switching
- * from using a stack-allocated array to dynamic heap once a given number of
- * items are reached. It is used in order to retain the list of parent nodes
- * while walking the radix tree in order to implement certain operations that
- * need to navigate the tree upward.
- * ------------------------------------------------------------------------- */
-
-/* Initialize the stack. */
-static inline void raxStackInit(raxStack *ts) {
- ts->stack = ts->static_items;
- ts->items = 0;
- ts->maxitems = RAX_STACK_STATIC_ITEMS;
- ts->oom = 0;
-}
-
-/* Push an item into the stack, returns 1 on success, 0 on out of memory. */
-static inline int raxStackPush(raxStack *ts, void *ptr) {
- if (ts->items == ts->maxitems) {
- if (ts->stack == ts->static_items) {
- ts->stack = rax_malloc(sizeof(void*)*ts->maxitems*2);
- if (ts->stack == NULL) {
- ts->stack = ts->static_items;
- ts->oom = 1;
- errno = ENOMEM;
- return 0;
- }
- memcpy(ts->stack,ts->static_items,sizeof(void*)*ts->maxitems);
- } else {
- void **newalloc = rax_realloc(ts->stack,sizeof(void*)*ts->maxitems*2);
- if (newalloc == NULL) {
- ts->oom = 1;
- errno = ENOMEM;
- return 0;
- }
- ts->stack = newalloc;
- }
- ts->maxitems *= 2;
- }
- ts->stack[ts->items] = ptr;
- ts->items++;
- return 1;
-}
-
-/* Pop an item from the stack, the function returns NULL if there are no
- * items to pop. */
-static inline void *raxStackPop(raxStack *ts) {
- if (ts->items == 0) return NULL;
- ts->items--;
- return ts->stack[ts->items];
-}
-
-/* Return the stack item at the top of the stack without actually consuming
- * it. */
-static inline void *raxStackPeek(raxStack *ts) {
- if (ts->items == 0) return NULL;
- return ts->stack[ts->items-1];
-}
-
-/* Free the stack in case we used heap allocation. */
-static inline void raxStackFree(raxStack *ts) {
- if (ts->stack != ts->static_items) rax_free(ts->stack);
-}
-
-/* ----------------------------------------------------------------------------
- * Radix tree implementation
- * --------------------------------------------------------------------------*/
-
-/* Allocate a new non compressed node with the specified number of children.
- * If datafiled is true, the allocation is made large enough to hold the
- * associated data pointer.
- * Returns the new node pointer. On out of memory NULL is returned. */
-raxNode *raxNewNode(size_t children, int datafield) {
- size_t nodesize = sizeof(raxNode)+children+
- sizeof(raxNode*)*children;
- if (datafield) nodesize += sizeof(void*);
- raxNode *node = rax_malloc(nodesize);
- if (node == NULL) return NULL;
- node->iskey = 0;
- node->isnull = 0;
- node->iscompr = 0;
- node->size = children;
- return node;
-}
-
-/* Allocate a new rax and return its pointer. On out of memory the function
- * returns NULL. */
-rax *raxNew(void) {
- rax *rax = rax_malloc(sizeof(*rax));
- if (rax == NULL) return NULL;
- rax->numele = 0;
- rax->numnodes = 1;
- rax->head = raxNewNode(0,0);
- if (rax->head == NULL) {
- rax_free(rax);
- return NULL;
- } else {
- return rax;
- }
-}
-
-/* Return the current total size of the node. */
-#define raxNodeCurrentLength(n) ( \
- sizeof(raxNode)+(n)->size+ \
- ((n)->iscompr ? sizeof(raxNode*) : sizeof(raxNode*)*(n)->size)+ \
- (((n)->iskey && !(n)->isnull)*sizeof(void*)) \
-)
-
-/* realloc the node to make room for auxiliary data in order
- * to store an item in that node. On out of memory NULL is returned. */
-raxNode *raxReallocForData(raxNode *n, void *data) {
- if (data == NULL) return n; /* No reallocation needed, setting isnull=1 */
- size_t curlen = raxNodeCurrentLength(n);
- return rax_realloc(n,curlen+sizeof(void*));
-}
-
-/* Set the node auxiliary data to the specified pointer. */
-void raxSetData(raxNode *n, void *data) {
- n->iskey = 1;
- if (data != NULL) {
- n->isnull = 0;
- void **ndata = (void**)
- ((char*)n+raxNodeCurrentLength(n)-sizeof(void*));
- memcpy(ndata,&data,sizeof(data));
- } else {
- n->isnull = 1;
- }
-}
-
-/* Get the node auxiliary data. */
-void *raxGetData(raxNode *n) {
- if (n->isnull) return NULL;
- void **ndata =(void**)((char*)n+raxNodeCurrentLength(n)-sizeof(void*));
- void *data;
- memcpy(&data,ndata,sizeof(data));
- return data;
-}
-
-/* Add a new child to the node 'n' representing the character 'c' and return
- * its new pointer, as well as the child pointer by reference. Additionally
- * '***parentlink' is populated with the raxNode pointer-to-pointer of where
- * the new child was stored, which is useful for the caller to replace the
- * child pointer if it gets reallocated.
- *
- * On success the new parent node pointer is returned (it may change because
- * of the realloc, so the caller should discard 'n' and use the new value).
- * On out of memory NULL is returned, and the old node is still valid. */
-raxNode *raxAddChild(raxNode *n, unsigned char c, raxNode **childptr, raxNode ***parentlink) {
- assert(n->iscompr == 0);
-
- size_t curlen = sizeof(raxNode)+
- n->size+
- sizeof(raxNode*)*n->size;
- size_t newlen;
-
- /* Alloc the new child we will link to 'n'. */
- raxNode *child = raxNewNode(0,0);
- if (child == NULL) return NULL;
-
- /* Make space in the original node. */
- if (n->iskey) curlen += sizeof(void*);
- newlen = curlen+sizeof(raxNode*)+1; /* Add 1 char and 1 pointer. */
- raxNode *newn = rax_realloc(n,newlen);
- if (newn == NULL) {
- rax_free(child);
- return NULL;
- }
- n = newn;
-
- /* After the reallocation, we have 5/9 (depending on the system
- * pointer size) bytes at the end, that is, the additional char
- * in the 'data' section, plus one pointer to the new child:
- *
- * [numc][abx][ap][bp][xp]|auxp|.....
- *
- * Let's find where to insert the new child in order to make sure
- * it is inserted in-place lexicographically. */
- int pos;
- for (pos = 0; pos < n->size; pos++) {
- if (n->data[pos] > c) break;
- }
-
- /* Now, if present, move auxiliary data pointer at the end
- * so that we can mess with the other data without overwriting it.
- * We will obtain something like that:
- *
- * [numc][abx][ap][bp][xp].....|auxp| */
- unsigned char *src;
- if (n->iskey && !n->isnull) {
- src = n->data+n->size+sizeof(raxNode*)*n->size;
- memmove(src+1+sizeof(raxNode*),src,sizeof(void*));
- }
-
- /* Now imagine we are adding a node with edge 'c'. The insertion
- * point is between 'b' and 'x', so the 'pos' variable value is
- * To start, move all the child pointers after the insertion point
- * of 1+sizeof(pointer) bytes on the right, to obtain:
- *
- * [numc][abx][ap][bp].....[xp]|auxp| */
- src = n->data+n->size+sizeof(raxNode*)*pos;
- memmove(src+1+sizeof(raxNode*),src,sizeof(raxNode*)*(n->size-pos));
-
- /* Now make the space for the additional char in the data section,
- * but also move the pointers before the insertion point in the right
- * by 1 byte, in order to obtain the following:
- *
- * [numc][ab.x][ap][bp]....[xp]|auxp| */
- src = n->data+pos;
- memmove(src+1,src,n->size-pos+sizeof(raxNode*)*pos);
-
- /* We can now set the character and its child node pointer to get:
- *
- * [numc][abcx][ap][bp][cp]....|auxp|
- * [numc][abcx][ap][bp][cp][xp]|auxp| */
- n->data[pos] = c;
- n->size++;
- raxNode **childfield = (raxNode**)(n->data+n->size+sizeof(raxNode*)*pos);
- memcpy(childfield,&child,sizeof(child));
- *childptr = child;
- *parentlink = childfield;
- return n;
-}
-
-/* Return the pointer to the last child pointer in a node. For the compressed
- * nodes this is the only child pointer. */
-#define raxNodeLastChildPtr(n) ((raxNode**) ( \
- ((char*)(n)) + \
- raxNodeCurrentLength(n) - \
- sizeof(raxNode*) - \
- (((n)->iskey && !(n)->isnull) ? sizeof(void*) : 0) \
-))
-
-/* Return the pointer to the first child pointer. */
-#define raxNodeFirstChildPtr(n) ((raxNode**)((n)->data+(n)->size))
-
-/* Turn the node 'n', that must be a node without any children, into a
- * compressed node representing a set of nodes linked one after the other
- * and having exactly one child each. The node can be a key or not: this
- * property and the associated value if any will be preserved.
- *
- * The function also returns a child node, since the last node of the
- * compressed chain cannot be part of the chain: it has zero children while
- * we can only compress inner nodes with exactly one child each. */
-raxNode *raxCompressNode(raxNode *n, unsigned char *s, size_t len, raxNode **child) {
- assert(n->size == 0 && n->iscompr == 0);
- void *data = NULL; /* Initialized only to avoid warnings. */
- size_t newsize;
-
- debugf("Compress node: %.*s\n", (int)len,s);
-
- /* Allocate the child to link to this node. */
- *child = raxNewNode(0,0);
- if (*child == NULL) return NULL;
-
- /* Make space in the parent node. */
- newsize = sizeof(raxNode)+len+sizeof(raxNode*);
- if (n->iskey) {
- data = raxGetData(n); /* To restore it later. */
- if (!n->isnull) newsize += sizeof(void*);
- }
- raxNode *newn = rax_realloc(n,newsize);
- if (newn == NULL) {
- rax_free(*child);
- return NULL;
- }
- n = newn;
-
- n->iscompr = 1;
- n->size = len;
- memcpy(n->data,s,len);
- if (n->iskey) raxSetData(n,data);
- raxNode **childfield = raxNodeLastChildPtr(n);
- memcpy(childfield,child,sizeof(*child));
- return n;
-}
-
-/* Low level function that walks the tree looking for the string
- * 's' of 'len' bytes. The function returns the number of characters
- * of the key that was possible to process: if the returned integer
- * is the same as 'len', then it means that the node corresponding to the
- * string was found (however it may not be a key in case the node->iskey is
- * zero or if simply we stopped in the middle of a compressed node, so that
- * 'splitpos' is non zero).
- *
- * Otherwise if the returned integer is not the same as 'len', there was an
- * early stop during the tree walk because of a character mismatch.
- *
- * The node where the search ended (because the full string was processed
- * or because there was an early stop) is returned by reference as
- * '*stopnode' if the passed pointer is not NULL. This node link in the
- * parent's node is returned as '*plink' if not NULL. Finally, if the
- * search stopped in a compressed node, '*splitpos' returns the index
- * inside the compressed node where the search ended. This is useful to
- * know where to split the node for insertion.
- *
- * Note that when we stop in the middle of a compressed node with
- * a perfect match, this function will return a length equal to the
- * 'len' argument (all the key matched), and will return a *splitpos which is
- * always positive (that will represent the index of the character immediately
- * *after* the last match in the current compressed node).
- *
- * When instead we stop at a compressed node and *splitpos is zero, it
- * means that the current node represents the key (that is, none of the
- * compressed node characters are needed to represent the key, just all
- * its parents nodes). */
-static inline size_t raxLowWalk(rax *rax, unsigned char *s, size_t len, raxNode **stopnode, raxNode ***plink, int *splitpos, raxStack *ts) {
- raxNode *h = rax->head;
- raxNode **parentlink = &rax->head;
-
- size_t i = 0; /* Position in the string. */
- size_t j = 0; /* Position in the node children (or bytes if compressed).*/
- while(h->size && i < len) {
- debugnode("Lookup current node",h);
- unsigned char *v = h->data;
-
- if (h->iscompr) {
- for (j = 0; j < h->size && i < len; j++, i++) {
- if (v[j] != s[i]) break;
- }
- if (j != h->size) break;
- } else {
- /* Even when h->size is large, linear scan provides good
- * performances compared to other approaches that are in theory
- * more sounding, like performing a binary search. */
- for (j = 0; j < h->size; j++) {
- if (v[j] == s[i]) break;
- }
- if (j == h->size) break;
- i++;
- }
-
- if (ts) raxStackPush(ts,h); /* Save stack of parent nodes. */
- raxNode **children = raxNodeFirstChildPtr(h);
- if (h->iscompr) j = 0; /* Compressed node only child is at index 0. */
- memcpy(&h,children+j,sizeof(h));
- parentlink = children+j;
- j = 0; /* If the new node is compressed and we do not
- iterate again (since i == l) set the split
- position to 0 to signal this node represents
- the searched key. */
- }
- debugnode("Lookup stop node is",h);
- if (stopnode) *stopnode = h;
- if (plink) *plink = parentlink;
- if (splitpos && h->iscompr) *splitpos = j;
- return i;
-}
-
-/* Insert the element 's' of size 'len', setting as auxiliary data
- * the pointer 'data'. If the element is already present, the associated
- * data is updated (only if 'overwrite' is set to 1), and 0 is returned,
- * otherwise the element is inserted and 1 is returned. On out of memory the
- * function returns 0 as well but sets errno to ENOMEM, otherwise errno will
- * be set to 0.
- */
-int raxGenericInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old, int overwrite) {
- size_t i;
- int j = 0; /* Split position. If raxLowWalk() stops in a compressed
- node, the index 'j' represents the char we stopped within the
- compressed node, that is, the position where to split the
- node for insertion. */
- raxNode *h, **parentlink;
-
- debugf("### Insert %.*s with value %p\n", (int)len, s, data);
- i = raxLowWalk(rax,s,len,&h,&parentlink,&j,NULL);
-
- /* If i == len we walked following the whole string. If we are not
- * in the middle of a compressed node, the string is either already
- * inserted or this middle node is currently not a key, but can represent
- * our key. We have just to reallocate the node and make space for the
- * data pointer. */
- if (i == len && (!h->iscompr || j == 0 /* not in the middle if j is 0 */)) {
- debugf("### Insert: node representing key exists\n");
- /* Make space for the value pointer if needed. */
- if (!h->iskey || (h->isnull && overwrite)) {
- h = raxReallocForData(h,data);
- if (h) memcpy(parentlink,&h,sizeof(h));
- }
- if (h == NULL) {
- errno = ENOMEM;
- return 0;
- }
-
- /* Update the existing key if there is already one. */
- if (h->iskey) {
- if (old) *old = raxGetData(h);
- if (overwrite) raxSetData(h,data);
- errno = 0;
- return 0; /* Element already exists. */
- }
-
- /* Otherwise set the node as a key. Note that raxSetData()
- * will set h->iskey. */
- raxSetData(h,data);
- rax->numele++;
- return 1; /* Element inserted. */
- }
-
- /* If the node we stopped at is a compressed node, we need to
- * split it before to continue.
- *
- * Splitting a compressed node have a few possibile cases.
- * Imagine that the node 'h' we are currently at is a compressed
- * node contaning the string "ANNIBALE" (it means that it represents
- * nodes A -> N -> N -> I -> B -> A -> L -> E with the only child
- * pointer of this node pointing at the 'E' node, because remember that
- * we have characters at the edges of the graph, not inside the nodes
- * themselves.
- *
- * In order to show a real case imagine our node to also point to
- * another compressed node, that finally points at the node without
- * children, representing 'O':
- *
- * "ANNIBALE" -> "SCO" -> []
- *
- * When inserting we may face the following cases. Note that all the cases
- * require the insertion of a non compressed node with exactly two
- * children, except for the last case which just requires splitting a
- * compressed node.
- *
- * 1) Inserting "ANNIENTARE"
- *
- * |B| -> "ALE" -> "SCO" -> []
- * "ANNI" -> |-|
- * |E| -> (... continue algo ...) "NTARE" -> []
- *
- * 2) Inserting "ANNIBALI"
- *
- * |E| -> "SCO" -> []
- * "ANNIBAL" -> |-|
- * |I| -> (... continue algo ...) []
- *
- * 3) Inserting "AGO" (Like case 1, but set iscompr = 0 into original node)
- *
- * |N| -> "NIBALE" -> "SCO" -> []
- * |A| -> |-|
- * |G| -> (... continue algo ...) |O| -> []
- *
- * 4) Inserting "CIAO"
- *
- * |A| -> "NNIBALE" -> "SCO" -> []
- * |-|
- * |C| -> (... continue algo ...) "IAO" -> []
- *
- * 5) Inserting "ANNI"
- *
- * "ANNI" -> "BALE" -> "SCO" -> []
- *
- * The final algorithm for insertion covering all the above cases is as
- * follows.
- *
- * ============================= ALGO 1 =============================
- *
- * For the above cases 1 to 4, that is, all cases where we stopped in
- * the middle of a compressed node for a character mismatch, do:
- *
- * Let $SPLITPOS be the zero-based index at which, in the
- * compressed node array of characters, we found the mismatching
- * character. For example if the node contains "ANNIBALE" and we add
- * "ANNIENTARE" the $SPLITPOS is 4, that is, the index at which the
- * mismatching character is found.
- *
- * 1. Save the current compressed node $NEXT pointer (the pointer to the
- * child element, that is always present in compressed nodes).
- *
- * 2. Create "split node" having as child the non common letter
- * at the compressed node. The other non common letter (at the key)
- * will be added later as we continue the normal insertion algorithm
- * at step "6".
- *
- * 3a. IF $SPLITPOS == 0:
- * Replace the old node with the split node, by copying the auxiliary
- * data if any. Fix parent's reference. Free old node eventually
- * (we still need its data for the next steps of the algorithm).
- *
- * 3b. IF $SPLITPOS != 0:
- * Trim the compressed node (reallocating it as well) in order to
- * contain $splitpos characters. Change chilid pointer in order to link
- * to the split node. If new compressed node len is just 1, set
- * iscompr to 0 (layout is the same). Fix parent's reference.
- *
- * 4a. IF the postfix len (the length of the remaining string of the
- * original compressed node after the split character) is non zero,
- * create a "postfix node". If the postfix node has just one character
- * set iscompr to 0, otherwise iscompr to 1. Set the postfix node
- * child pointer to $NEXT.
- *
- * 4b. IF the postfix len is zero, just use $NEXT as postfix pointer.
- *
- * 5. Set child[0] of split node to postfix node.
- *
- * 6. Set the split node as the current node, set current index at child[1]
- * and continue insertion algorithm as usually.
- *
- * ============================= ALGO 2 =============================
- *
- * For case 5, that is, if we stopped in the middle of a compressed
- * node but no mismatch was found, do:
- *
- * Let $SPLITPOS be the zero-based index at which, in the
- * compressed node array of characters, we stopped iterating because
- * there were no more keys character to match. So in the example of
- * the node "ANNIBALE", addig the string "ANNI", the $SPLITPOS is 4.
- *
- * 1. Save the current compressed node $NEXT pointer (the pointer to the
- * child element, that is always present in compressed nodes).
- *
- * 2. Create a "postfix node" containing all the characters from $SPLITPOS
- * to the end. Use $NEXT as the postfix node child pointer.
- * If the postfix node length is 1, set iscompr to 0.
- * Set the node as a key with the associated value of the new
- * inserted key.
- *
- * 3. Trim the current node to contain the first $SPLITPOS characters.
- * As usually if the new node length is just 1, set iscompr to 0.
- * Take the iskey / associated value as it was in the orignal node.
- * Fix the parent's reference.
- *
- * 4. Set the postfix node as the only child pointer of the trimmed
- * node created at step 1.
- */
-
- /* ------------------------- ALGORITHM 1 --------------------------- */
- if (h->iscompr && i != len) {
- debugf("ALGO 1: Stopped at compressed node %.*s (%p)\n",
- h->size, h->data, (void*)h);
- debugf("Still to insert: %.*s\n", (int)(len-i), s+i);
- debugf("Splitting at %d: '%c'\n", j, ((char*)h->data)[j]);
- debugf("Other (key) letter is '%c'\n", s[i]);
-
- /* 1: Save next pointer. */
- raxNode **childfield = raxNodeLastChildPtr(h);
- raxNode *next;
- memcpy(&next,childfield,sizeof(next));
- debugf("Next is %p\n", (void*)next);
- debugf("iskey %d\n", h->iskey);
- if (h->iskey) {
- debugf("key value is %p\n", raxGetData(h));
- }
-
- /* Set the length of the additional nodes we will need. */
- size_t trimmedlen = j;
- size_t postfixlen = h->size - j - 1;
- int split_node_is_key = !trimmedlen && h->iskey && !h->isnull;
- size_t nodesize;
-
- /* 2: Create the split node. Also allocate the other nodes we'll need
- * ASAP, so that it will be simpler to handle OOM. */
- raxNode *splitnode = raxNewNode(1, split_node_is_key);
- raxNode *trimmed = NULL;
- raxNode *postfix = NULL;
-
- if (trimmedlen) {
- nodesize = sizeof(raxNode)+trimmedlen+sizeof(raxNode*);
- if (h->iskey && !h->isnull) nodesize += sizeof(void*);
- trimmed = rax_malloc(nodesize);
- }
-
- if (postfixlen) {
- nodesize = sizeof(raxNode)+postfixlen+
- sizeof(raxNode*);
- postfix = rax_malloc(nodesize);
- }
-
- /* OOM? Abort now that the tree is untouched. */
- if (splitnode == NULL ||
- (trimmedlen && trimmed == NULL) ||
- (postfixlen && postfix == NULL))
- {
- rax_free(splitnode);
- rax_free(trimmed);
- rax_free(postfix);
- errno = ENOMEM;
- return 0;
- }
- splitnode->data[0] = h->data[j];
-
- if (j == 0) {
- /* 3a: Replace the old node with the split node. */
- if (h->iskey) {
- void *ndata = raxGetData(h);
- raxSetData(splitnode,ndata);
- }
- memcpy(parentlink,&splitnode,sizeof(splitnode));
- } else {
- /* 3b: Trim the compressed node. */
- trimmed->size = j;
- memcpy(trimmed->data,h->data,j);
- trimmed->iscompr = j > 1 ? 1 : 0;
- trimmed->iskey = h->iskey;
- trimmed->isnull = h->isnull;
- if (h->iskey && !h->isnull) {
- void *ndata = raxGetData(h);
- raxSetData(trimmed,ndata);
- }
- raxNode **cp = raxNodeLastChildPtr(trimmed);
- memcpy(cp,&splitnode,sizeof(splitnode));
- memcpy(parentlink,&trimmed,sizeof(trimmed));
- parentlink = cp; /* Set parentlink to splitnode parent. */
- rax->numnodes++;
- }
-
- /* 4: Create the postfix node: what remains of the original
- * compressed node after the split. */
- if (postfixlen) {
- /* 4a: create a postfix node. */
- postfix->iskey = 0;
- postfix->isnull = 0;
- postfix->size = postfixlen;
- postfix->iscompr = postfixlen > 1;
- memcpy(postfix->data,h->data+j+1,postfixlen);
- raxNode **cp = raxNodeLastChildPtr(postfix);
- memcpy(cp,&next,sizeof(next));
- rax->numnodes++;
- } else {
- /* 4b: just use next as postfix node. */
- postfix = next;
- }
-
- /* 5: Set splitnode first child as the postfix node. */
- raxNode **splitchild = raxNodeLastChildPtr(splitnode);
- memcpy(splitchild,&postfix,sizeof(postfix));
-
- /* 6. Continue insertion: this will cause the splitnode to
- * get a new child (the non common character at the currently
- * inserted key). */
- rax_free(h);
- h = splitnode;
- } else if (h->iscompr && i == len) {
- /* ------------------------- ALGORITHM 2 --------------------------- */
- debugf("ALGO 2: Stopped at compressed node %.*s (%p) j = %d\n",
- h->size, h->data, (void*)h, j);
-
- /* Allocate postfix & trimmed nodes ASAP to fail for OOM gracefully. */
- size_t postfixlen = h->size - j;
- size_t nodesize = sizeof(raxNode)+postfixlen+sizeof(raxNode*);
- if (data != NULL) nodesize += sizeof(void*);
- raxNode *postfix = rax_malloc(nodesize);
-
- nodesize = sizeof(raxNode)+j+sizeof(raxNode*);
- if (h->iskey && !h->isnull) nodesize += sizeof(void*);
- raxNode *trimmed = rax_malloc(nodesize);
-
- if (postfix == NULL || trimmed == NULL) {
- rax_free(postfix);
- rax_free(trimmed);
- errno = ENOMEM;
- return 0;
- }
-
- /* 1: Save next pointer. */
- raxNode **childfield = raxNodeLastChildPtr(h);
- raxNode *next;
- memcpy(&next,childfield,sizeof(next));
-
- /* 2: Create the postfix node. */
- postfix->size = postfixlen;
- postfix->iscompr = postfixlen > 1;
- postfix->iskey = 1;
- postfix->isnull = 0;
- memcpy(postfix->data,h->data+j,postfixlen);
- raxSetData(postfix,data);
- raxNode **cp = raxNodeLastChildPtr(postfix);
- memcpy(cp,&next,sizeof(next));
- rax->numnodes++;
-
- /* 3: Trim the compressed node. */
- trimmed->size = j;
- trimmed->iscompr = j > 1;
- trimmed->iskey = 0;
- trimmed->isnull = 0;
- memcpy(trimmed->data,h->data,j);
- memcpy(parentlink,&trimmed,sizeof(trimmed));
- if (h->iskey) {
- void *aux = raxGetData(h);
- raxSetData(trimmed,aux);
- }
-
- /* Fix the trimmed node child pointer to point to
- * the postfix node. */
- cp = raxNodeLastChildPtr(trimmed);
- memcpy(cp,&postfix,sizeof(postfix));
-
- /* Finish! We don't need to contine with the insertion
- * algorithm for ALGO 2. The key is already inserted. */
- rax->numele++;
- rax_free(h);
- return 1; /* Key inserted. */
- }
-
- /* We walked the radix tree as far as we could, but still there are left
- * chars in our string. We need to insert the missing nodes. */
- while(i < len) {
- raxNode *child;
-
- /* If this node is going to have a single child, and there
- * are other characters, so that that would result in a chain
- * of single-childed nodes, turn it into a compressed node. */
- if (h->size == 0 && len-i > 1) {
- debugf("Inserting compressed node\n");
- size_t comprsize = len-i;
- if (comprsize > RAX_NODE_MAX_SIZE)
- comprsize = RAX_NODE_MAX_SIZE;
- raxNode *newh = raxCompressNode(h,s+i,comprsize,&child);
- if (newh == NULL) goto oom;
- h = newh;
- memcpy(parentlink,&h,sizeof(h));
- parentlink = raxNodeLastChildPtr(h);
- i += comprsize;
- } else {
- debugf("Inserting normal node\n");
- raxNode **new_parentlink;
- raxNode *newh = raxAddChild(h,s[i],&child,&new_parentlink);
- if (newh == NULL) goto oom;
- h = newh;
- memcpy(parentlink,&h,sizeof(h));
- parentlink = new_parentlink;
- i++;
- }
- rax->numnodes++;
- h = child;
- }
- raxNode *newh = raxReallocForData(h,data);
- if (newh == NULL) goto oom;
- h = newh;
- if (!h->iskey) rax->numele++;
- raxSetData(h,data);
- memcpy(parentlink,&h,sizeof(h));
- return 1; /* Element inserted. */
-
-oom:
- /* This code path handles out of memory after part of the sub-tree was
- * already modified. Set the node as a key, and then remove it. However we
- * do that only if the node is a terminal node, otherwise if the OOM
- * happened reallocating a node in the middle, we don't need to free
- * anything. */
- if (h->size == 0) {
- h->isnull = 1;
- h->iskey = 1;
- rax->numele++; /* Compensate the next remove. */
- assert(raxRemove(rax,s,i,NULL) != 0);
- }
- errno = ENOMEM;
- return 0;
-}
-
-/* Overwriting insert. Just a wrapper for raxGenericInsert() that will
- * update the element if there is already one for the same key. */
-int raxInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old) {
- return raxGenericInsert(rax,s,len,data,old,1);
-}
-
-/* Non overwriting insert function: this if an element with the same key
- * exists, the value is not updated and the function returns 0.
- * This is a just a wrapper for raxGenericInsert(). */
-int raxTryInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old) {
- return raxGenericInsert(rax,s,len,data,old,0);
-}
-
-/* Find a key in the rax, returns raxNotFound special void pointer value
- * if the item was not found, otherwise the value associated with the
- * item is returned. */
-void *raxFind(rax *rax, unsigned char *s, size_t len) {
- raxNode *h;
-
- debugf("### Lookup: %.*s\n", (int)len, s);
- int splitpos = 0;
- size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,NULL);
- if (i != len || (h->iscompr && splitpos != 0) || !h->iskey)
- return raxNotFound;
- return raxGetData(h);
-}
-
-/* Return the memory address where the 'parent' node stores the specified
- * 'child' pointer, so that the caller can update the pointer with another
- * one if needed. The function assumes it will find a match, otherwise the
- * operation is an undefined behavior (it will continue scanning the
- * memory without any bound checking). */
-raxNode **raxFindParentLink(raxNode *parent, raxNode *child) {
- raxNode **cp = raxNodeFirstChildPtr(parent);
- raxNode *c;
- while(1) {
- memcpy(&c,cp,sizeof(c));
- if (c == child) break;
- cp++;
- }
- return cp;
-}
-
-/* Low level child removal from node. The new node pointer (after the child
- * removal) is returned. Note that this function does not fix the pointer
- * of the parent node in its parent, so this task is up to the caller.
- * The function never fails for out of memory. */
-raxNode *raxRemoveChild(raxNode *parent, raxNode *child) {
- debugnode("raxRemoveChild before", parent);
- /* If parent is a compressed node (having a single child, as for definition
- * of the data structure), the removal of the child consists into turning
- * it into a normal node without children. */
- if (parent->iscompr) {
- void *data = NULL;
- if (parent->iskey) data = raxGetData(parent);
- parent->isnull = 0;
- parent->iscompr = 0;
- parent->size = 0;
- if (parent->iskey) raxSetData(parent,data);
- debugnode("raxRemoveChild after", parent);
- return parent;
- }
-
- /* Otherwise we need to scan for the children pointer and memmove()
- * accordingly.
- *
- * 1. To start we seek the first element in both the children
- * pointers and edge bytes in the node. */
- raxNode **cp = raxNodeFirstChildPtr(parent);
- raxNode **c = cp;
- unsigned char *e = parent->data;
-
- /* 2. Search the child pointer to remove inside the array of children
- * pointers. */
- while(1) {
- raxNode *aux;
- memcpy(&aux,c,sizeof(aux));
- if (aux == child) break;
- c++;
- e++;
- }
-
- /* 3. Remove the edge and the pointer by memmoving the remaining children
- * pointer and edge bytes one position before. */
- int taillen = parent->size - (e - parent->data) - 1;
- debugf("raxRemoveChild tail len: %d\n", taillen);
- memmove(e,e+1,taillen);
-
- /* Since we have one data byte less, also child pointers start one byte
- * before now. */
- memmove(((char*)cp)-1,cp,(parent->size-taillen-1)*sizeof(raxNode**));
-
- /* Move the remaining "tail" pointer at the right position as well. */
- size_t valuelen = (parent->iskey && !parent->isnull) ? sizeof(void*) : 0;
- memmove(((char*)c)-1,c+1,taillen*sizeof(raxNode**)+valuelen);
-
- /* 4. Update size. */
- parent->size--;
-
- /* realloc the node according to the theoretical memory usage, to free
- * data if we are over-allocating right now. */
- raxNode *newnode = rax_realloc(parent,raxNodeCurrentLength(parent));
- if (newnode) {
- debugnode("raxRemoveChild after", newnode);
- }
- /* Note: if rax_realloc() fails we just return the old address, which
- * is valid. */
- return newnode ? newnode : parent;
-}
-
-/* Remove the specified item. Returns 1 if the item was found and
- * deleted, 0 otherwise. */
-int raxRemove(rax *rax, unsigned char *s, size_t len, void **old) {
- raxNode *h;
- raxStack ts;
-
- debugf("### Delete: %.*s\n", (int)len, s);
- raxStackInit(&ts);
- int splitpos = 0;
- size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,&ts);
- if (i != len || (h->iscompr && splitpos != 0) || !h->iskey) {
- raxStackFree(&ts);
- return 0;
- }
- if (old) *old = raxGetData(h);
- h->iskey = 0;
- rax->numele--;
-
- /* If this node has no children, the deletion needs to reclaim the
- * no longer used nodes. This is an iterative process that needs to
- * walk the three upward, deleting all the nodes with just one child
- * that are not keys, until the head of the rax is reached or the first
- * node with more than one child is found. */
-
- int trycompress = 0; /* Will be set to 1 if we should try to optimize the
- tree resulting from the deletion. */
-
- if (h->size == 0) {
- debugf("Key deleted in node without children. Cleanup needed.\n");
- raxNode *child = NULL;
- while(h != rax->head) {
- child = h;
- debugf("Freeing child %p [%.*s] key:%d\n", (void*)child,
- (int)child->size, (char*)child->data, child->iskey);
- rax_free(child);
- rax->numnodes--;
- h = raxStackPop(&ts);
- /* If this node has more then one child, or actually holds
- * a key, stop here. */
- if (h->iskey || (!h->iscompr && h->size != 1)) break;
- }
- if (child) {
- debugf("Unlinking child %p from parent %p\n",
- (void*)child, (void*)h);
- raxNode *new = raxRemoveChild(h,child);
- if (new != h) {
- raxNode *parent = raxStackPeek(&ts);
- raxNode **parentlink;
- if (parent == NULL) {
- parentlink = &rax->head;
- } else {
- parentlink = raxFindParentLink(parent,h);
- }
- memcpy(parentlink,&new,sizeof(new));
- }
-
- /* If after the removal the node has just a single child
- * and is not a key, we need to try to compress it. */
- if (new->size == 1 && new->iskey == 0) {
- trycompress = 1;
- h = new;
- }
- }
- } else if (h->size == 1) {
- /* If the node had just one child, after the removal of the key
- * further compression with adjacent nodes is pontentially possible. */
- trycompress = 1;
- }
-
- /* Don't try node compression if our nodes pointers stack is not
- * complete because of OOM while executing raxLowWalk() */
- if (trycompress && ts.oom) trycompress = 0;
-
- /* Recompression: if trycompress is true, 'h' points to a radix tree node
- * that changed in a way that could allow to compress nodes in this
- * sub-branch. Compressed nodes represent chains of nodes that are not
- * keys and have a single child, so there are two deletion events that
- * may alter the tree so that further compression is needed:
- *
- * 1) A node with a single child was a key and now no longer is a key.
- * 2) A node with two children now has just one child.
- *
- * We try to navigate upward till there are other nodes that can be
- * compressed, when we reach the upper node which is not a key and has
- * a single child, we scan the chain of children to collect the
- * compressable part of the tree, and replace the current node with the
- * new one, fixing the child pointer to reference the first non
- * compressable node.
- *
- * Example of case "1". A tree stores the keys "FOO" = 1 and
- * "FOOBAR" = 2:
- *
- *
- * "FOO" -> "BAR" -> [] (2)
- * (1)
- *
- * After the removal of "FOO" the tree can be compressed as:
- *
- * "FOOBAR" -> [] (2)
- *
- *
- * Example of case "2". A tree stores the keys "FOOBAR" = 1 and
- * "FOOTER" = 2:
- *
- * |B| -> "AR" -> [] (1)
- * "FOO" -> |-|
- * |T| -> "ER" -> [] (2)
- *
- * After the removal of "FOOTER" the resulting tree is:
- *
- * "FOO" -> |B| -> "AR" -> [] (1)
- *
- * That can be compressed into:
- *
- * "FOOBAR" -> [] (1)
- */
- if (trycompress) {
- debugf("After removing %.*s:\n", (int)len, s);
- debugnode("Compression may be needed",h);
- debugf("Seek start node\n");
-
- /* Try to reach the upper node that is compressible.
- * At the end of the loop 'h' will point to the first node we
- * can try to compress and 'parent' to its parent. */
- raxNode *parent;
- while(1) {
- parent = raxStackPop(&ts);
- if (!parent || parent->iskey ||
- (!parent->iscompr && parent->size != 1)) break;
- h = parent;
- debugnode("Going up to",h);
- }
- raxNode *start = h; /* Compression starting node. */
-
- /* Scan chain of nodes we can compress. */
- size_t comprsize = h->size;
- int nodes = 1;
- while(h->size != 0) {
- raxNode **cp = raxNodeLastChildPtr(h);
- memcpy(&h,cp,sizeof(h));
- if (h->iskey || (!h->iscompr && h->size != 1)) break;
- /* Stop here if going to the next node would result into
- * a compressed node larger than h->size can hold. */
- if (comprsize + h->size > RAX_NODE_MAX_SIZE) break;
- nodes++;
- comprsize += h->size;
- }
- if (nodes > 1) {
- /* If we can compress, create the new node and populate it. */
- size_t nodesize =
- sizeof(raxNode)+comprsize+sizeof(raxNode*);
- raxNode *new = rax_malloc(nodesize);
- /* An out of memory here just means we cannot optimize this
- * node, but the tree is left in a consistent state. */
- if (new == NULL) {
- raxStackFree(&ts);
- return 1;
- }
- new->iskey = 0;
- new->isnull = 0;
- new->iscompr = 1;
- new->size = comprsize;
- rax->numnodes++;
-
- /* Scan again, this time to populate the new node content and
- * to fix the new node child pointer. At the same time we free
- * all the nodes that we'll no longer use. */
- comprsize = 0;
- h = start;
- while(h->size != 0) {
- memcpy(new->data+comprsize,h->data,h->size);
- comprsize += h->size;
- raxNode **cp = raxNodeLastChildPtr(h);
- raxNode *tofree = h;
- memcpy(&h,cp,sizeof(h));
- rax_free(tofree); rax->numnodes--;
- if (h->iskey || (!h->iscompr && h->size != 1)) break;
- }
- debugnode("New node",new);
-
- /* Now 'h' points to the first node that we still need to use,
- * so our new node child pointer will point to it. */
- raxNode **cp = raxNodeLastChildPtr(new);
- memcpy(cp,&h,sizeof(h));
-
- /* Fix parent link. */
- if (parent) {
- raxNode **parentlink = raxFindParentLink(parent,start);
- memcpy(parentlink,&new,sizeof(new));
- } else {
- rax->head = new;
- }
-
- debugf("Compressed %d nodes, %d total bytes\n",
- nodes, (int)comprsize);
- }
- }
- raxStackFree(&ts);
- return 1;
-}
-
-/* This is the core of raxFree(): performs a depth-first scan of the
- * tree and releases all the nodes found. */
-void raxRecursiveFree(rax *rax, raxNode *n, void (*free_callback)(void*)) {
- debugnode("free traversing",n);
- int numchildren = n->iscompr ? 1 : n->size;
- raxNode **cp = raxNodeLastChildPtr(n);
- while(numchildren--) {
- raxNode *child;
- memcpy(&child,cp,sizeof(child));
- raxRecursiveFree(rax,child,free_callback);
- cp--;
- }
- debugnode("free depth-first",n);
- if (free_callback && n->iskey && !n->isnull)
- free_callback(raxGetData(n));
- rax_free(n);
- rax->numnodes--;
-}
-
-/* Free a whole radix tree, calling the specified callback in order to
- * free the auxiliary data. */
-void raxFreeWithCallback(rax *rax, void (*free_callback)(void*)) {
- raxRecursiveFree(rax,rax->head,free_callback);
- assert(rax->numnodes == 0);
- rax_free(rax);
-}
-
-/* Free a whole radix tree. */
-void raxFree(rax *rax) {
- raxFreeWithCallback(rax,NULL);
-}
-
-/* ------------------------------- Iterator --------------------------------- */
-
-/* Initialize a Rax iterator. This call should be performed a single time
- * to initialize the iterator, and must be followed by a raxSeek() call,
- * otherwise the raxPrev()/raxNext() functions will just return EOF. */
-void raxStart(raxIterator *it, rax *rt) {
- it->flags = RAX_ITER_EOF; /* No crash if the iterator is not seeked. */
- it->rt = rt;
- it->key_len = 0;
- it->key = it->key_static_string;
- it->key_max = RAX_ITER_STATIC_LEN;
- it->data = NULL;
- raxStackInit(&it->stack);
-}
-
-/* Append characters at the current key string of the iterator 'it'. This
- * is a low level function used to implement the iterator, not callable by
- * the user. Returns 0 on out of memory, otherwise 1 is returned. */
-int raxIteratorAddChars(raxIterator *it, unsigned char *s, size_t len) {
- if (it->key_max < it->key_len+len) {
- unsigned char *old = (it->key == it->key_static_string) ? NULL :
- it->key;
- size_t new_max = (it->key_len+len)*2;
- it->key = rax_realloc(old,new_max);
- if (it->key == NULL) {
- it->key = (!old) ? it->key_static_string : old;
- errno = ENOMEM;
- return 0;
- }
- if (old == NULL) memcpy(it->key,it->key_static_string,it->key_len);
- it->key_max = new_max;
- }
- /* Use memmove since there could be an overlap between 's' and
- * it->key when we use the current key in order to re-seek. */
- memmove(it->key+it->key_len,s,len);
- it->key_len += len;
- return 1;
-}
-
-/* Remove the specified number of chars from the right of the current
- * iterator key. */
-void raxIteratorDelChars(raxIterator *it, size_t count) {
- it->key_len -= count;
-}
-
-/* Do an iteration step towards the next element. At the end of the step the
- * iterator key will represent the (new) current key. If it is not possible
- * to step in the specified direction since there are no longer elements, the
- * iterator is flagged with RAX_ITER_EOF.
- *
- * If 'noup' is true the function starts directly scanning for the next
- * lexicographically smaller children, and the current node is already assumed
- * to be the parent of the last key node, so the first operation to go back to
- * the parent will be skipped. This option is used by raxSeek() when
- * implementing seeking a non existing element with the ">" or "<" options:
- * the starting node is not a key in that particular case, so we start the scan
- * from a node that does not represent the key set.
- *
- * The function returns 1 on success or 0 on out of memory. */
-int raxIteratorNextStep(raxIterator *it, int noup) {
- if (it->flags & RAX_ITER_EOF) {
- return 1;
- } else if (it->flags & RAX_ITER_JUST_SEEKED) {
- it->flags &= ~RAX_ITER_JUST_SEEKED;
- return 1;
- }
-
- /* Save key len, stack items and the node where we are currently
- * so that on iterator EOF we can restore the current key and state. */
- size_t orig_key_len = it->key_len;
- size_t orig_stack_items = it->stack.items;
- raxNode *orig_node = it->node;
-
- while(1) {
- int children = it->node->iscompr ? 1 : it->node->size;
- if (!noup && children) {
- debugf("GO DEEPER\n");
- /* Seek the lexicographically smaller key in this subtree, which
- * is the first one found always going torwards the first child
- * of every successive node. */
- if (!raxStackPush(&it->stack,it->node)) return 0;
- raxNode **cp = raxNodeFirstChildPtr(it->node);
- if (!raxIteratorAddChars(it,it->node->data,
- it->node->iscompr ? it->node->size : 1)) return 0;
- memcpy(&it->node,cp,sizeof(it->node));
- /* For "next" step, stop every time we find a key along the
- * way, since the key is lexicograhically smaller compared to
- * what follows in the sub-children. */
- if (it->node->iskey) {
- it->data = raxGetData(it->node);
- return 1;
- }
- } else {
- /* If we finished exporing the previous sub-tree, switch to the
- * new one: go upper until a node is found where there are
- * children representing keys lexicographically greater than the
- * current key. */
- while(1) {
- int old_noup = noup;
-
- /* Already on head? Can't go up, iteration finished. */
- if (!noup && it->node == it->rt->head) {
- it->flags |= RAX_ITER_EOF;
- it->stack.items = orig_stack_items;
- it->key_len = orig_key_len;
- it->node = orig_node;
- return 1;
- }
- /* If there are no children at the current node, try parent's
- * next child. */
- unsigned char prevchild = it->key[it->key_len-1];
- if (!noup) {
- it->node = raxStackPop(&it->stack);
- } else {
- noup = 0;
- }
- /* Adjust the current key to represent the node we are
- * at. */
- int todel = it->node->iscompr ? it->node->size : 1;
- raxIteratorDelChars(it,todel);
-
- /* Try visiting the next child if there was at least one
- * additional child. */
- if (!it->node->iscompr && it->node->size > (old_noup ? 0 : 1)) {
- raxNode **cp = raxNodeFirstChildPtr(it->node);
- int i = 0;
- while (i < it->node->size) {
- debugf("SCAN NEXT %c\n", it->node->data[i]);
- if (it->node->data[i] > prevchild) break;
- i++;
- cp++;
- }
- if (i != it->node->size) {
- debugf("SCAN found a new node\n");
- raxIteratorAddChars(it,it->node->data+i,1);
- if (!raxStackPush(&it->stack,it->node)) return 0;
- memcpy(&it->node,cp,sizeof(it->node));
- if (it->node->iskey) {
- it->data = raxGetData(it->node);
- return 1;
- }
- break;
- }
- }
- }
- }
- }
-}
-
-/* Seek the grestest key in the subtree at the current node. Return 0 on
- * out of memory, otherwise 1. This is an helper function for different
- * iteration functions below. */
-int raxSeekGreatest(raxIterator *it) {
- while(it->node->size) {
- if (it->node->iscompr) {
- if (!raxIteratorAddChars(it,it->node->data,
- it->node->size)) return 0;
- } else {
- if (!raxIteratorAddChars(it,it->node->data+it->node->size-1,1))
- return 0;
- }
- raxNode **cp = raxNodeLastChildPtr(it->node);
- if (!raxStackPush(&it->stack,it->node)) return 0;
- memcpy(&it->node,cp,sizeof(it->node));
- }
- return 1;
-}
-
-/* Like raxIteratorNextStep() but implements an iteration step moving
- * to the lexicographically previous element. The 'noup' option has a similar
- * effect to the one of raxIteratorPrevSte(). */
-int raxIteratorPrevStep(raxIterator *it, int noup) {
- if (it->flags & RAX_ITER_EOF) {
- return 1;
- } else if (it->flags & RAX_ITER_JUST_SEEKED) {
- it->flags &= ~RAX_ITER_JUST_SEEKED;
- return 1;
- }
-
- /* Save key len, stack items and the node where we are currently
- * so that on iterator EOF we can restore the current key and state. */
- size_t orig_key_len = it->key_len;
- size_t orig_stack_items = it->stack.items;
- raxNode *orig_node = it->node;
-
- while(1) {
- int old_noup = noup;
-
- /* Already on head? Can't go up, iteration finished. */
- if (!noup && it->node == it->rt->head) {
- it->flags |= RAX_ITER_EOF;
- it->stack.items = orig_stack_items;
- it->key_len = orig_key_len;
- it->node = orig_node;
- return 1;
- }
-
- unsigned char prevchild = it->key[it->key_len-1];
- if (!noup) {
- it->node = raxStackPop(&it->stack);
- } else {
- noup = 0;
- }
-
- /* Adjust the current key to represent the node we are
- * at. */
- int todel = it->node->iscompr ? it->node->size : 1;
- raxIteratorDelChars(it,todel);
-
- /* Try visiting the prev child if there is at least one
- * child. */
- if (!it->node->iscompr && it->node->size > (old_noup ? 0 : 1)) {
- raxNode **cp = raxNodeLastChildPtr(it->node);
- int i = it->node->size-1;
- while (i >= 0) {
- debugf("SCAN PREV %c\n", it->node->data[i]);
- if (it->node->data[i] < prevchild) break;
- i--;
- cp--;
- }
- /* If we found a new subtree to explore in this node,
- * go deeper following all the last children in order to
- * find the key lexicographically greater. */
- if (i != -1) {
- debugf("SCAN found a new node\n");
- /* Enter the node we just found. */
- if (!raxIteratorAddChars(it,it->node->data+i,1)) return 0;
- if (!raxStackPush(&it->stack,it->node)) return 0;
- memcpy(&it->node,cp,sizeof(it->node));
- /* Seek sub-tree max. */
- if (!raxSeekGreatest(it)) return 0;
- }
- }
-
- /* Return the key: this could be the key we found scanning a new
- * subtree, or if we did not find a new subtree to explore here,
- * before giving up with this node, check if it's a key itself. */
- if (it->node->iskey) {
- it->data = raxGetData(it->node);
- return 1;
- }
- }
-}
-
-/* Seek an iterator at the specified element.
- * Return 0 if the seek failed for syntax error or out of memory. Otherwise
- * 1 is returned. When 0 is returned for out of memory, errno is set to
- * the ENOMEM value. */
-int raxSeek(raxIterator *it, const char *op, unsigned char *ele, size_t len) {
- int eq = 0, lt = 0, gt = 0, first = 0, last = 0;
-
- it->stack.items = 0; /* Just resetting. Intialized by raxStart(). */
- it->flags |= RAX_ITER_JUST_SEEKED;
- it->flags &= ~RAX_ITER_EOF;
- it->key_len = 0;
- it->node = NULL;
-
- /* Set flags according to the operator used to perform the seek. */
- if (op[0] == '>') {
- gt = 1;
- if (op[1] == '=') eq = 1;
- } else if (op[0] == '<') {
- lt = 1;
- if (op[1] == '=') eq = 1;
- } else if (op[0] == '=') {
- eq = 1;
- } else if (op[0] == '^') {
- first = 1;
- } else if (op[0] == '$') {
- last = 1;
- } else {
- errno = 0;
- return 0; /* Error. */
- }
-
- /* If there are no elements, set the EOF condition immediately and
- * return. */
- if (it->rt->numele == 0) {
- it->flags |= RAX_ITER_EOF;
- return 1;
- }
-
- if (first) {
- /* Seeking the first key greater or equal to the empty string
- * is equivalent to seeking the smaller key available. */
- return raxSeek(it,">=",NULL,0);
- }
-
- if (last) {
- /* Find the greatest key taking always the last child till a
- * final node is found. */
- it->node = it->rt->head;
- if (!raxSeekGreatest(it)) return 0;
- assert(it->node->iskey);
- it->data = raxGetData(it->node);
- return 1;
- }
-
- /* We need to seek the specified key. What we do here is to actually
- * perform a lookup, and later invoke the prev/next key code that
- * we already use for iteration. */
- int splitpos = 0;
- size_t i = raxLowWalk(it->rt,ele,len,&it->node,NULL,&splitpos,&it->stack);
-
- /* Return OOM on incomplete stack info. */
- if (it->stack.oom) return 0;
-
- if (eq && i == len && (!it->node->iscompr || splitpos == 0) &&
- it->node->iskey)
- {
- /* We found our node, since the key matches and we have an
- * "equal" condition. */
- if (!raxIteratorAddChars(it,ele,len)) return 0; /* OOM. */
- it->data = raxGetData(it->node);
- } else if (lt || gt) {
- /* Exact key not found or eq flag not set. We have to set as current
- * key the one represented by the node we stopped at, and perform
- * a next/prev operation to seek. To reconstruct the key at this node
- * we start from the parent and go to the current node, accumulating
- * the characters found along the way. */
- if (!raxStackPush(&it->stack,it->node)) return 0;
- for (size_t j = 1; j < it->stack.items; j++) {
- raxNode *parent = it->stack.stack[j-1];
- raxNode *child = it->stack.stack[j];
- if (parent->iscompr) {
- if (!raxIteratorAddChars(it,parent->data,parent->size))
- return 0;
- } else {
- raxNode **cp = raxNodeFirstChildPtr(parent);
- unsigned char *p = parent->data;
- while(1) {
- raxNode *aux;
- memcpy(&aux,cp,sizeof(aux));
- if (aux == child) break;
- cp++;
- p++;
- }
- if (!raxIteratorAddChars(it,p,1)) return 0;
- }
- }
- raxStackPop(&it->stack);
-
- /* We need to set the iterator in the correct state to call next/prev
- * step in order to seek the desired element. */
- debugf("After initial seek: i=%d len=%d key=%.*s\n",
- (int)i, (int)len, (int)it->key_len, it->key);
- if (i != len && !it->node->iscompr) {
- /* If we stopped in the middle of a normal node because of a
- * mismatch, add the mismatching character to the current key
- * and call the iterator with the 'noup' flag so that it will try
- * to seek the next/prev child in the current node directly based
- * on the mismatching character. */
- if (!raxIteratorAddChars(it,ele+i,1)) return 0;
- debugf("Seek normal node on mismatch: %.*s\n",
- (int)it->key_len, (char*)it->key);
-
- it->flags &= ~RAX_ITER_JUST_SEEKED;
- if (lt && !raxIteratorPrevStep(it,1)) return 0;
- if (gt && !raxIteratorNextStep(it,1)) return 0;
- it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */
- } else if (i != len && it->node->iscompr) {
- debugf("Compressed mismatch: %.*s\n",
- (int)it->key_len, (char*)it->key);
- /* In case of a mismatch within a compressed node. */
- int nodechar = it->node->data[splitpos];
- int keychar = ele[i];
- it->flags &= ~RAX_ITER_JUST_SEEKED;
- if (gt) {
- /* If the key the compressed node represents is greater
- * than our seek element, continue forward, otherwise set the
- * state in order to go back to the next sub-tree. */
- if (nodechar > keychar) {
- if (!raxIteratorNextStep(it,0)) return 0;
- } else {
- if (!raxIteratorAddChars(it,it->node->data,it->node->size))
- return 0;
- if (!raxIteratorNextStep(it,1)) return 0;
- }
- }
- if (lt) {
- /* If the key the compressed node represents is smaller
- * than our seek element, seek the greater key in this
- * subtree, otherwise set the state in order to go back to
- * the previous sub-tree. */
- if (nodechar < keychar) {
- if (!raxSeekGreatest(it)) return 0;
- it->data = raxGetData(it->node);
- } else {
- if (!raxIteratorAddChars(it,it->node->data,it->node->size))
- return 0;
- if (!raxIteratorPrevStep(it,1)) return 0;
- }
- }
- it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */
- } else {
- debugf("No mismatch: %.*s\n",
- (int)it->key_len, (char*)it->key);
- /* If there was no mismatch we are into a node representing the
- * key, (but which is not a key or the seek operator does not
- * include 'eq'), or we stopped in the middle of a compressed node
- * after processing all the key. Continue iterating as this was
- * a legitimate key we stopped at. */
- it->flags &= ~RAX_ITER_JUST_SEEKED;
- if (it->node->iscompr && it->node->iskey && splitpos && lt) {
- /* If we stopped in the middle of a compressed node with
- * perfect match, and the condition is to seek a key "<" than
- * the specified one, then if this node is a key it already
- * represents our match. For instance we may have nodes:
- *
- * "f" -> "oobar" = 1 -> "" = 2
- *
- * Representing keys "f" = 1, "foobar" = 2. A seek for
- * the key < "foo" will stop in the middle of the "oobar"
- * node, but will be our match, representing the key "f".
- *
- * So in that case, we don't seek backward. */
- } else {
- if (gt && !raxIteratorNextStep(it,0)) return 0;
- if (lt && !raxIteratorPrevStep(it,0)) return 0;
- }
- it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */
- }
- } else {
- /* If we are here just eq was set but no match was found. */
- it->flags |= RAX_ITER_EOF;
- return 1;
- }
- return 1;
-}
-
-/* Go to the next element in the scope of the iterator 'it'.
- * If EOF (or out of memory) is reached, 0 is returned, otherwise 1 is
- * returned. In case 0 is returned because of OOM, errno is set to ENOMEM. */
-int raxNext(raxIterator *it) {
- if (!raxIteratorNextStep(it,0)) {
- errno = ENOMEM;
- return 0;
- }
- if (it->flags & RAX_ITER_EOF) {
- errno = 0;
- return 0;
- }
- return 1;
-}
-
-/* Go to the previous element in the scope of the iterator 'it'.
- * If EOF (or out of memory) is reached, 0 is returned, otherwise 1 is
- * returned. In case 0 is returned because of OOM, errno is set to ENOMEM. */
-int raxPrev(raxIterator *it) {
- if (!raxIteratorPrevStep(it,0)) {
- errno = ENOMEM;
- return 0;
- }
- if (it->flags & RAX_ITER_EOF) {
- errno = 0;
- return 0;
- }
- return 1;
-}
-
-/* Perform a random walk starting in the current position of the iterator.
- * Return 0 if the tree is empty or on out of memory. Otherwise 1 is returned
- * and the iterator is set to the node reached after doing a random walk
- * of 'steps' steps. If the 'steps' argument is 0, the random walk is performed
- * using a random number of steps between 1 and two times the logarithm of
- * the number of elements.
- *
- * NOTE: if you use this function to generate random elements from the radix
- * tree, expect a disappointing distribution. A random walk produces good
- * random elements if the tree is not sparse, however in the case of a radix
- * tree certain keys will be reported much more often than others. At least
- * this function should be able to expore every possible element eventually. */
-int raxRandomWalk(raxIterator *it, size_t steps) {
- if (it->rt->numele == 0) {
- it->flags |= RAX_ITER_EOF;
- return 0;
- }
-
- if (steps == 0) {
- size_t fle = floor(log(it->rt->numele));
- fle *= 2;
- steps = 1 + rand() % fle;
- }
-
- raxNode *n = it->node;
- while(steps > 0 || !n->iskey) {
- int numchildren = n->iscompr ? 1 : n->size;
- int r = rand() % (numchildren+(n != it->rt->head));
-
- if (r == numchildren) {
- /* Go up to parent. */
- n = raxStackPop(&it->stack);
- int todel = n->iscompr ? n->size : 1;
- raxIteratorDelChars(it,todel);
- } else {
- /* Select a random child. */
- if (n->iscompr) {
- if (!raxIteratorAddChars(it,n->data,n->size)) return 0;
- } else {
- if (!raxIteratorAddChars(it,n->data+r,1)) return 0;
- }
- raxNode **cp = raxNodeFirstChildPtr(n)+r;
- if (!raxStackPush(&it->stack,n)) return 0;
- memcpy(&n,cp,sizeof(n));
- }
- if (n->iskey) steps--;
- }
- it->node = n;
- return 1;
-}
-
-/* Compare the key currently pointed by the iterator to the specified
- * key according to the specified operator. Returns 1 if the comparison is
- * true, otherwise 0 is returned. */
-int raxCompare(raxIterator *iter, const char *op, unsigned char *key, size_t key_len) {
- int eq = 0, lt = 0, gt = 0;
-
- if (op[0] == '=' || op[1] == '=') eq = 1;
- if (op[0] == '>') gt = 1;
- else if (op[0] == '<') lt = 1;
- else if (op[1] != '=') return 0; /* Syntax error. */
-
- size_t minlen = key_len < iter->key_len ? key_len : iter->key_len;
- int cmp = memcmp(iter->key,key,minlen);
-
- /* Handle == */
- if (lt == 0 && gt == 0) return cmp == 0 && key_len == iter->key_len;
-
- /* Handle >, >=, <, <= */
- if (cmp == 0) {
- /* Same prefix: longer wins. */
- if (eq && key_len == iter->key_len) return 1;
- else if (lt) return iter->key_len < key_len;
- else if (gt) return iter->key_len > key_len;
- } if (cmp > 0) {
- return gt ? 1 : 0;
- } else /* (cmp < 0) */ {
- return lt ? 1 : 0;
- }
-}
-
-/* Free the iterator. */
-void raxStop(raxIterator *it) {
- if (it->key != it->key_static_string) rax_free(it->key);
- raxStackFree(&it->stack);
-}
-
-/* Return if the iterator is in an EOF state. This happens when raxSeek()
- * failed to seek an appropriate element, so that raxNext() or raxPrev()
- * will return zero, or when an EOF condition was reached while iterating
- * with raxNext() and raxPrev(). */
-int raxEOF(raxIterator *it) {
- return it->flags & RAX_ITER_EOF;
-}
-
-/* Return the number of elements inside the radix tree. */
-uint64_t raxSize(rax *rax) {
- return rax->numele;
-}
-
-/* ----------------------------- Introspection ------------------------------ */
-
-/* This function is mostly used for debugging and learning purposes.
- * It shows an ASCII representation of a tree on standard output, outling
- * all the nodes and the contained keys.
- *
- * The representation is as follow:
- *
- * "foobar" (compressed node)
- * [abc] (normal node with three children)
- * [abc]=0x12345678 (node is a key, pointing to value 0x12345678)
- * [] (a normal empty node)
- *
- * Children are represented in new idented lines, each children prefixed by
- * the "`-(x)" string, where "x" is the edge byte.
- *
- * [abc]
- * `-(a) "ladin"
- * `-(b) [kj]
- * `-(c) []
- *
- * However when a node has a single child the following representation
- * is used instead:
- *
- * [abc] -> "ladin" -> []
- */
-
-/* The actual implementation of raxShow(). */
-void raxRecursiveShow(int level, int lpad, raxNode *n) {
- char s = n->iscompr ? '"' : '[';
- char e = n->iscompr ? '"' : ']';
-
- int numchars = printf("%c%.*s%c", s, n->size, n->data, e);
- if (n->iskey) {
- numchars += printf("=%p",raxGetData(n));
- }
-
- int numchildren = n->iscompr ? 1 : n->size;
- /* Note that 7 and 4 magic constants are the string length
- * of " `-(x) " and " -> " respectively. */
- if (level) {
- lpad += (numchildren > 1) ? 7 : 4;
- if (numchildren == 1) lpad += numchars;
- }
- raxNode **cp = raxNodeFirstChildPtr(n);
- for (int i = 0; i < numchildren; i++) {
- char *branch = " `-(%c) ";
- if (numchildren > 1) {
- printf("\n");
- for (int j = 0; j < lpad; j++) putchar(' ');
- printf(branch,n->data[i]);
- } else {
- printf(" -> ");
- }
- raxNode *child;
- memcpy(&child,cp,sizeof(child));
- raxRecursiveShow(level+1,lpad,child);
- cp++;
- }
-}
-
-/* Show a tree, as outlined in the comment above. */
-void raxShow(rax *rax) {
- raxRecursiveShow(0,0,rax->head);
- putchar('\n');
-}
-
-/* Used by debugnode() macro to show info about a given node. */
-void raxDebugShowNode(const char *msg, raxNode *n) {
- printf("%s: %p [%.*s] key:%d size:%d children:",
- msg, (void*)n, (int)n->size, (char*)n->data, n->iskey, n->size);
- int numcld = n->iscompr ? 1 : n->size;
- raxNode **cldptr = raxNodeLastChildPtr(n) - (numcld-1);
- while(numcld--) {
- raxNode *child;
- memcpy(&child,cldptr,sizeof(child));
- cldptr++;
- printf("%p ", (void*)child);
- }
- printf("\n");
- fflush(stdout);
-}
-
-
diff --git a/rax.h b/rax.h
deleted file mode 100644
index 5b4d451..0000000
--- a/rax.h
+++ /dev/null
@@ -1,164 +0,0 @@
-#ifndef RAX_H
-#define RAX_H
-
-#include <stdint.h>
-
-/* Representation of a radix tree as implemented in this file, that contains
- * the strings "foo", "foobar" and "footer" after the insertion of each
- * word. When the node represents a key inside the radix tree, we write it
- * between [], otherwise it is written between ().
- *
- * This is the vanilla representation:
- *
- * (f) ""
- * \
- * (o) "f"
- * \
- * (o) "fo"
- * \
- * [t b] "foo"
- * / \
- * "foot" (e) (a) "foob"
- * / \
- * "foote" (r) (r) "fooba"
- * / \
- * "footer" [] [] "foobar"
- *
- * However, this implementation implements a very common optimization where
- * successive nodes having a single child are "compressed" into the node
- * itself as a string of characters, each representing a next-level child,
- * and only the link to the node representing the last character node is
- * provided inside the representation. So the above representation is turend
- * into:
- *
- * ["foo"] ""
- * |
- * [t b] "foo"
- * / \
- * "foot" ("er") ("ar") "foob"
- * / \
- * "footer" [] [] "foobar"
- *
- * However this optimization makes the implementation a bit more complex.
- * For instance if a key "first" is added in the above radix tree, a
- * "node splitting" operation is needed, since the "foo" prefix is no longer
- * composed of nodes having a single child one after the other. This is the
- * above tree and the resulting node splitting after this event happens:
- *
- *
- * (f) ""
- * /
- * (i o) "f"
- * / \
- * "firs" ("rst") (o) "fo"
- * / \
- * "first" [] [t b] "foo"
- * / \
- * "foot" ("er") ("ar") "foob"
- * / \
- * "footer" [] [] "foobar"
- *
- * Similarly after deletion, if a new chain of nodes having a single child
- * is created (the chain must also not include nodes that represent keys),
- * it must be compressed back into a single node.
- *
- */
-
-#define RAX_NODE_MAX_SIZE ((1<<29)-1)
-typedef struct raxNode {
- uint32_t iskey:1; /* Does this node contain a key? */
- uint32_t isnull:1; /* Associated value is NULL (don't store it). */
- uint32_t iscompr:1; /* Node is compressed. */
- uint32_t size:29; /* Number of children, or compressed string len. */
- /* Data layout is as follows:
- *
- * If node is not compressed we have 'size' bytes, one for each children
- * character, and 'size' raxNode pointers, point to each child node.
- * Note how the character is not stored in the children but in the
- * edge of the parents:
- *
- * [header strlen=0][abc][a-ptr][b-ptr][c-ptr](value-ptr?)
- *
- * if node is compressed (strlen != 0) the node has 1 children.
- * In that case the 'size' bytes of the string stored immediately at
- * the start of the data section, represent a sequence of successive
- * nodes linked one after the other, for which only the last one in
- * the sequence is actually represented as a node, and pointed to by
- * the current compressed node.
- *
- * [header strlen=3][xyz][z-ptr](value-ptr?)
- *
- * Both compressed and not compressed nodes can represent a key
- * with associated data in the radix tree at any level (not just terminal
- * nodes).
- *
- * If the node has an associated key (iskey=1) and is not NULL
- * (isnull=0), then after the raxNode pointers poiting to the
- * childen, an additional value pointer is present (as you can see
- * in the representation above as "value-ptr" field).
- */
- unsigned char data[];
-} raxNode;
-
-typedef struct rax {
- raxNode *head;
- uint64_t numele;
- uint64_t numnodes;
-} rax;
-
-/* Stack data structure used by raxLowWalk() in order to, optionally, return
- * a list of parent nodes to the caller. The nodes do not have a "parent"
- * field for space concerns, so we use the auxiliary stack when needed. */
-#define RAX_STACK_STATIC_ITEMS 32
-typedef struct raxStack {
- void **stack; /* Points to static_items or an heap allocated array. */
- size_t items, maxitems; /* Number of items contained and total space. */
- /* Up to RAXSTACK_STACK_ITEMS items we avoid to allocate on the heap
- * and use this static array of pointers instead. */
- void *static_items[RAX_STACK_STATIC_ITEMS];
- int oom; /* True if pushing into this stack failed for OOM at some point. */
-} raxStack;
-
-/* Radix tree iterator state is encapsulated into this data structure. */
-#define RAX_ITER_STATIC_LEN 128
-#define RAX_ITER_JUST_SEEKED (1<<0) /* Iterator was just seeked. Return current
- element for the first iteration and
- clear the flag. */
-#define RAX_ITER_EOF (1<<1) /* End of iteration reached. */
-#define RAX_ITER_SAFE (1<<2) /* Safe iterator, allows operations while
- iterating. But it is slower. */
-typedef struct raxIterator {
- int flags;
- rax *rt; /* Radix tree we are iterating. */
- unsigned char *key; /* The current string. */
- void *data; /* Data associated to this key. */
- size_t key_len; /* Current key length. */
- size_t key_max; /* Max key len the current key buffer can hold. */
- unsigned char key_static_string[RAX_ITER_STATIC_LEN];
- raxNode *node; /* Current node. Only for unsafe iteration. */
- raxStack stack; /* Stack used for unsafe iteration. */
-} raxIterator;
-
-/* A special pointer returned for not found items. */
-extern void *raxNotFound;
-
-/* Exported API. */
-rax *raxNew(void);
-int raxInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old);
-int raxTryInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old);
-int raxRemove(rax *rax, unsigned char *s, size_t len, void **old);
-void *raxFind(rax *rax, unsigned char *s, size_t len);
-void raxFree(rax *rax);
-void raxFreeWithCallback(rax *rax, void (*free_callback)(void*));
-void raxStart(raxIterator *it, rax *rt);
-int raxSeek(raxIterator *it, const char *op, unsigned char *ele, size_t len);
-int raxNext(raxIterator *it);
-int raxPrev(raxIterator *it);
-int raxRandomWalk(raxIterator *it, size_t steps);
-int raxCompare(raxIterator *iter, const char *op, unsigned char *key, size_t key_len);
-void raxStop(raxIterator *it);
-int raxEOF(raxIterator *it);
-void raxShow(rax *rax);
-uint64_t raxSize(rax *rax);
-
-#endif
diff --git a/redis.spec b/redis.spec
index a807277..b19eb93 100644
--- a/redis.spec
+++ b/redis.spec
@@ -33,8 +33,8 @@
# Pre-version are only available in github
%global upstream_ver 5.0.0
-%global upstream_pre RC2
-%global gh_commit f7209749a632218e5a3fa3171f5711075573af8f
+%global upstream_pre RC3
+%global gh_commit 48dfd42d729ce8325b20cb084203b129b2759fb8
%global gh_short %(c=%{gh_commit}; echo ${c:0:7})
%global gh_owner antirez
%global gh_project redis
@@ -71,10 +71,6 @@ Source8: %{name}-limit-init
Source9: macros.%{name}
Source10: https://github.com/antirez/%{name}-doc/archive/%{doc_commit}/%{name}-doc-%{short_doc_commit}.tar.gz
-# See https://github.com/antirez/redis/issues/5022
-Source11: https://raw.githubusercontent.com/antirez/redis/unstable/src/rax.c
-Source12: https://raw.githubusercontent.com/antirez/redis/unstable/src/rax.h
-
# To refresh patches:
# tar xf redis-xxx.tar.gz && cd redis-xxx && git init && git add . && git commit -m "%%{version} baseline"
# git am %%{patches}
@@ -192,8 +188,6 @@ rm -frv deps/jemalloc
%patch0001 -p1
%patch0002 -p1
-cp %{SOURCE11} %{SOURCE12} src/
-
# Use system jemalloc library
sed -i -e '/cd jemalloc && /d' deps/Makefile
sed -i -e 's|../deps/jemalloc/lib/libjemalloc.a|-ljemalloc -ldl|g' src/Makefile
@@ -410,6 +404,9 @@ fi
%changelog
+* Thu Jun 14 2018 Remi Collet <remi@remirepo.net> - 5.0.0~RC3-1
+- Redis 5.0 RC3 (4.9.103) - Released Wed Jun 14 9:51:44 CEST 2018
+
* Thu Jun 14 2018 Remi Collet <remi@remirepo.net> - 5.0.0~RC2-1
- Redis 5.0 RC2 (4.9.102) - Released Wed Jun 13 12:49:13 CEST 2018
- Upgrade urgency CRITICAL: This release fixes important security issues.