diff options
| -rw-r--r-- | rax.c | 1801 | ||||
| -rw-r--r-- | rax.h | 164 | ||||
| -rw-r--r-- | redis.spec | 13 | 
3 files changed, 5 insertions, 1973 deletions
@@ -1,1801 +0,0 @@ -/* Rax -- A radix tree implementation. - * - * Copyright (c) 2017, Salvatore Sanfilippo <antirez at gmail dot com> - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions are met: - * - *   * Redistributions of source code must retain the above copyright notice, - *     this list of conditions and the following disclaimer. - *   * Redistributions in binary form must reproduce the above copyright - *     notice, this list of conditions and the following disclaimer in the - *     documentation and/or other materials provided with the distribution. - *   * Neither the name of Redis nor the names of its contributors may be used - *     to endorse or promote products derived from this software without - *     specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE - * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#include <stdlib.h> -#include <string.h> -#include <assert.h> -#include <stdio.h> -#include <errno.h> -#include <math.h> -#include "rax.h" - -#ifndef RAX_MALLOC_INCLUDE -#define RAX_MALLOC_INCLUDE "rax_malloc.h" -#endif - -#include RAX_MALLOC_INCLUDE - -/* This is a special pointer that is guaranteed to never have the same value - * of a radix tree node. It's used in order to report "not found" error without - * requiring the function to have multiple return values. */ -void *raxNotFound = (void*)"rax-not-found-pointer"; - -/* -------------------------------- Debugging ------------------------------ */ - -void raxDebugShowNode(const char *msg, raxNode *n); - -/* Turn debugging messages on/off. */ -#if 0 -#define debugf(...)                                                            \ -    do {                                                                       \ -        printf("%s:%s:%d:\t", __FILE__, __FUNCTION__, __LINE__);               \ -        printf(__VA_ARGS__);                                                   \ -        fflush(stdout);                                                        \ -    } while (0); - -#define debugnode(msg,n) raxDebugShowNode(msg,n) -#else -#define debugf(...) -#define debugnode(msg,n) -#endif - -/* ------------------------- raxStack functions -------------------------- - * The raxStack is a simple stack of pointers that is capable of switching - * from using a stack-allocated array to dynamic heap once a given number of - * items are reached. It is used in order to retain the list of parent nodes - * while walking the radix tree in order to implement certain operations that - * need to navigate the tree upward. - * ------------------------------------------------------------------------- */ - -/* Initialize the stack. */ -static inline void raxStackInit(raxStack *ts) { -    ts->stack = ts->static_items; -    ts->items = 0; -    ts->maxitems = RAX_STACK_STATIC_ITEMS; -    ts->oom = 0; -} - -/* Push an item into the stack, returns 1 on success, 0 on out of memory. */ -static inline int raxStackPush(raxStack *ts, void *ptr) { -    if (ts->items == ts->maxitems) { -        if (ts->stack == ts->static_items) { -            ts->stack = rax_malloc(sizeof(void*)*ts->maxitems*2); -            if (ts->stack == NULL) { -                ts->stack = ts->static_items; -                ts->oom = 1; -                errno = ENOMEM; -                return 0; -            } -            memcpy(ts->stack,ts->static_items,sizeof(void*)*ts->maxitems); -        } else { -            void **newalloc = rax_realloc(ts->stack,sizeof(void*)*ts->maxitems*2); -            if (newalloc == NULL) { -                ts->oom = 1; -                errno = ENOMEM; -                return 0; -            } -            ts->stack = newalloc; -        } -        ts->maxitems *= 2; -    } -    ts->stack[ts->items] = ptr; -    ts->items++; -    return 1; -} - -/* Pop an item from the stack, the function returns NULL if there are no - * items to pop. */ -static inline void *raxStackPop(raxStack *ts) { -    if (ts->items == 0) return NULL; -    ts->items--; -    return ts->stack[ts->items]; -} - -/* Return the stack item at the top of the stack without actually consuming - * it. */ -static inline void *raxStackPeek(raxStack *ts) { -    if (ts->items == 0) return NULL; -    return ts->stack[ts->items-1]; -} - -/* Free the stack in case we used heap allocation. */ -static inline void raxStackFree(raxStack *ts) { -    if (ts->stack != ts->static_items) rax_free(ts->stack); -} - -/* ---------------------------------------------------------------------------- - * Radix tree implementation - * --------------------------------------------------------------------------*/ - -/* Allocate a new non compressed node with the specified number of children. - * If datafiled is true, the allocation is made large enough to hold the - * associated data pointer. - * Returns the new node pointer. On out of memory NULL is returned. */ -raxNode *raxNewNode(size_t children, int datafield) { -    size_t nodesize = sizeof(raxNode)+children+ -                      sizeof(raxNode*)*children; -    if (datafield) nodesize += sizeof(void*); -    raxNode *node = rax_malloc(nodesize); -    if (node == NULL) return NULL; -    node->iskey = 0; -    node->isnull = 0; -    node->iscompr = 0; -    node->size = children; -    return node; -} - -/* Allocate a new rax and return its pointer. On out of memory the function - * returns NULL. */ -rax *raxNew(void) { -    rax *rax = rax_malloc(sizeof(*rax)); -    if (rax == NULL) return NULL; -    rax->numele = 0; -    rax->numnodes = 1; -    rax->head = raxNewNode(0,0); -    if (rax->head == NULL) { -        rax_free(rax); -        return NULL; -    } else { -        return rax; -    } -} - -/* Return the current total size of the node. */ -#define raxNodeCurrentLength(n) ( \ -    sizeof(raxNode)+(n)->size+ \ -    ((n)->iscompr ? sizeof(raxNode*) : sizeof(raxNode*)*(n)->size)+ \ -    (((n)->iskey && !(n)->isnull)*sizeof(void*)) \ -) - -/* realloc the node to make room for auxiliary data in order - * to store an item in that node. On out of memory NULL is returned. */ -raxNode *raxReallocForData(raxNode *n, void *data) { -    if (data == NULL) return n; /* No reallocation needed, setting isnull=1 */ -    size_t curlen = raxNodeCurrentLength(n); -    return rax_realloc(n,curlen+sizeof(void*)); -} - -/* Set the node auxiliary data to the specified pointer. */ -void raxSetData(raxNode *n, void *data) { -    n->iskey = 1; -    if (data != NULL) { -        n->isnull = 0; -        void **ndata = (void**) -            ((char*)n+raxNodeCurrentLength(n)-sizeof(void*)); -        memcpy(ndata,&data,sizeof(data)); -    } else { -        n->isnull = 1; -    } -} - -/* Get the node auxiliary data. */ -void *raxGetData(raxNode *n) { -    if (n->isnull) return NULL; -    void **ndata =(void**)((char*)n+raxNodeCurrentLength(n)-sizeof(void*)); -    void *data; -    memcpy(&data,ndata,sizeof(data)); -    return data; -} - -/* Add a new child to the node 'n' representing the character 'c' and return - * its new pointer, as well as the child pointer by reference. Additionally - * '***parentlink' is populated with the raxNode pointer-to-pointer of where - * the new child was stored, which is useful for the caller to replace the - * child pointer if it gets reallocated. - * - * On success the new parent node pointer is returned (it may change because - * of the realloc, so the caller should discard 'n' and use the new value). - * On out of memory NULL is returned, and the old node is still valid. */ -raxNode *raxAddChild(raxNode *n, unsigned char c, raxNode **childptr, raxNode ***parentlink) { -    assert(n->iscompr == 0); - -    size_t curlen = sizeof(raxNode)+ -                    n->size+ -                    sizeof(raxNode*)*n->size; -    size_t newlen; - -    /* Alloc the new child we will link to 'n'. */ -    raxNode *child = raxNewNode(0,0); -    if (child == NULL) return NULL; - -    /* Make space in the original node. */ -    if (n->iskey) curlen += sizeof(void*); -    newlen = curlen+sizeof(raxNode*)+1; /* Add 1 char and 1 pointer. */ -    raxNode *newn = rax_realloc(n,newlen); -    if (newn == NULL) { -        rax_free(child); -        return NULL; -    } -    n = newn; - -    /* After the reallocation, we have 5/9 (depending on the system -     * pointer size) bytes at the end, that is, the additional char -     * in the 'data' section, plus one pointer to the new child: -     * -     * [numc][abx][ap][bp][xp]|auxp|..... -     * -     * Let's find where to insert the new child in order to make sure -     * it is inserted in-place lexicographically. */ -    int pos; -    for (pos = 0; pos < n->size; pos++) { -        if (n->data[pos] > c) break; -    } - -    /* Now, if present, move auxiliary data pointer at the end -     * so that we can mess with the other data without overwriting it. -     * We will obtain something like that: -     * -     * [numc][abx][ap][bp][xp].....|auxp| */ -    unsigned char *src; -    if (n->iskey && !n->isnull) { -        src = n->data+n->size+sizeof(raxNode*)*n->size; -        memmove(src+1+sizeof(raxNode*),src,sizeof(void*)); -    } - -    /* Now imagine we are adding a node with edge 'c'. The insertion -     * point is between 'b' and 'x', so the 'pos' variable value is -     * To start, move all the child pointers after the insertion point -     * of 1+sizeof(pointer) bytes on the right, to obtain: -     * -     * [numc][abx][ap][bp].....[xp]|auxp| */ -    src = n->data+n->size+sizeof(raxNode*)*pos; -    memmove(src+1+sizeof(raxNode*),src,sizeof(raxNode*)*(n->size-pos)); - -    /* Now make the space for the additional char in the data section, -     * but also move the pointers before the insertion point in the right -     * by 1 byte, in order to obtain the following: -     * -     * [numc][ab.x][ap][bp]....[xp]|auxp| */ -    src = n->data+pos; -    memmove(src+1,src,n->size-pos+sizeof(raxNode*)*pos); - -    /* We can now set the character and its child node pointer to get: -     * -     * [numc][abcx][ap][bp][cp]....|auxp| -     * [numc][abcx][ap][bp][cp][xp]|auxp| */ -    n->data[pos] = c; -    n->size++; -    raxNode **childfield = (raxNode**)(n->data+n->size+sizeof(raxNode*)*pos); -    memcpy(childfield,&child,sizeof(child)); -    *childptr = child; -    *parentlink = childfield; -    return n; -} - -/* Return the pointer to the last child pointer in a node. For the compressed - * nodes this is the only child pointer. */ -#define raxNodeLastChildPtr(n) ((raxNode**) ( \ -    ((char*)(n)) + \ -    raxNodeCurrentLength(n) - \ -    sizeof(raxNode*) - \ -    (((n)->iskey && !(n)->isnull) ? sizeof(void*) : 0) \ -)) - -/* Return the pointer to the first child pointer. */ -#define raxNodeFirstChildPtr(n) ((raxNode**)((n)->data+(n)->size)) - -/* Turn the node 'n', that must be a node without any children, into a - * compressed node representing a set of nodes linked one after the other - * and having exactly one child each. The node can be a key or not: this - * property and the associated value if any will be preserved. - * - * The function also returns a child node, since the last node of the - * compressed chain cannot be part of the chain: it has zero children while - * we can only compress inner nodes with exactly one child each. */ -raxNode *raxCompressNode(raxNode *n, unsigned char *s, size_t len, raxNode **child) { -    assert(n->size == 0 && n->iscompr == 0); -    void *data = NULL; /* Initialized only to avoid warnings. */ -    size_t newsize; - -    debugf("Compress node: %.*s\n", (int)len,s); - -    /* Allocate the child to link to this node. */ -    *child = raxNewNode(0,0); -    if (*child == NULL) return NULL; - -    /* Make space in the parent node. */ -    newsize = sizeof(raxNode)+len+sizeof(raxNode*); -    if (n->iskey) { -        data = raxGetData(n); /* To restore it later. */ -        if (!n->isnull) newsize += sizeof(void*); -    } -    raxNode *newn = rax_realloc(n,newsize); -    if (newn == NULL) { -        rax_free(*child); -        return NULL; -    } -    n = newn; - -    n->iscompr = 1; -    n->size = len; -    memcpy(n->data,s,len); -    if (n->iskey) raxSetData(n,data); -    raxNode **childfield = raxNodeLastChildPtr(n); -    memcpy(childfield,child,sizeof(*child)); -    return n; -} - -/* Low level function that walks the tree looking for the string - * 's' of 'len' bytes. The function returns the number of characters - * of the key that was possible to process: if the returned integer - * is the same as 'len', then it means that the node corresponding to the - * string was found (however it may not be a key in case the node->iskey is - * zero or if simply we stopped in the middle of a compressed node, so that - * 'splitpos' is non zero). - * - * Otherwise if the returned integer is not the same as 'len', there was an - * early stop during the tree walk because of a character mismatch. - * - * The node where the search ended (because the full string was processed - * or because there was an early stop) is returned by reference as - * '*stopnode' if the passed pointer is not NULL. This node link in the - * parent's node is returned as '*plink' if not NULL. Finally, if the - * search stopped in a compressed node, '*splitpos' returns the index - * inside the compressed node where the search ended. This is useful to - * know where to split the node for insertion. - * - * Note that when we stop in the middle of a compressed node with - * a perfect match, this function will return a length equal to the - * 'len' argument (all the key matched), and will return a *splitpos which is - * always positive (that will represent the index of the character immediately - * *after* the last match in the current compressed node). - * - * When instead we stop at a compressed node and *splitpos is zero, it - * means that the current node represents the key (that is, none of the - * compressed node characters are needed to represent the key, just all - * its parents nodes). */ -static inline size_t raxLowWalk(rax *rax, unsigned char *s, size_t len, raxNode **stopnode, raxNode ***plink, int *splitpos, raxStack *ts) { -    raxNode *h = rax->head; -    raxNode **parentlink = &rax->head; - -    size_t i = 0; /* Position in the string. */ -    size_t j = 0; /* Position in the node children (or bytes if compressed).*/ -    while(h->size && i < len) { -        debugnode("Lookup current node",h); -        unsigned char *v = h->data; - -        if (h->iscompr) { -            for (j = 0; j < h->size && i < len; j++, i++) { -                if (v[j] != s[i]) break; -            } -            if (j != h->size) break; -        } else { -            /* Even when h->size is large, linear scan provides good -             * performances compared to other approaches that are in theory -             * more sounding, like performing a binary search. */ -            for (j = 0; j < h->size; j++) { -                if (v[j] == s[i]) break; -            } -            if (j == h->size) break; -            i++; -        } - -        if (ts) raxStackPush(ts,h); /* Save stack of parent nodes. */ -        raxNode **children = raxNodeFirstChildPtr(h); -        if (h->iscompr) j = 0; /* Compressed node only child is at index 0. */ -        memcpy(&h,children+j,sizeof(h)); -        parentlink = children+j; -        j = 0; /* If the new node is compressed and we do not -                  iterate again (since i == l) set the split -                  position to 0 to signal this node represents -                  the searched key. */ -    } -    debugnode("Lookup stop node is",h); -    if (stopnode) *stopnode = h; -    if (plink) *plink = parentlink; -    if (splitpos && h->iscompr) *splitpos = j; -    return i; -} - -/* Insert the element 's' of size 'len', setting as auxiliary data - * the pointer 'data'. If the element is already present, the associated - * data is updated (only if 'overwrite' is set to 1), and 0 is returned, - * otherwise the element is inserted and 1 is returned. On out of memory the - * function returns 0 as well but sets errno to ENOMEM, otherwise errno will - * be set to 0. - */ -int raxGenericInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old, int overwrite) { -    size_t i; -    int j = 0; /* Split position. If raxLowWalk() stops in a compressed -                  node, the index 'j' represents the char we stopped within the -                  compressed node, that is, the position where to split the -                  node for insertion. */ -    raxNode *h, **parentlink; - -    debugf("### Insert %.*s with value %p\n", (int)len, s, data); -    i = raxLowWalk(rax,s,len,&h,&parentlink,&j,NULL); - -    /* If i == len we walked following the whole string. If we are not -     * in the middle of a compressed node, the string is either already -     * inserted or this middle node is currently not a key, but can represent -     * our key. We have just to reallocate the node and make space for the -     * data pointer. */ -    if (i == len && (!h->iscompr || j == 0 /* not in the middle if j is 0 */)) { -        debugf("### Insert: node representing key exists\n"); -        /* Make space for the value pointer if needed. */ -        if (!h->iskey || (h->isnull && overwrite)) { -            h = raxReallocForData(h,data); -            if (h) memcpy(parentlink,&h,sizeof(h)); -        } -        if (h == NULL) { -            errno = ENOMEM; -            return 0; -        } - -        /* Update the existing key if there is already one. */ -        if (h->iskey) { -            if (old) *old = raxGetData(h); -            if (overwrite) raxSetData(h,data); -            errno = 0; -            return 0; /* Element already exists. */ -        } - -        /* Otherwise set the node as a key. Note that raxSetData() -         * will set h->iskey. */ -        raxSetData(h,data); -        rax->numele++; -        return 1; /* Element inserted. */ -    } - -    /* If the node we stopped at is a compressed node, we need to -     * split it before to continue. -     * -     * Splitting a compressed node have a few possibile cases. -     * Imagine that the node 'h' we are currently at is a compressed -     * node contaning the string "ANNIBALE" (it means that it represents -     * nodes A -> N -> N -> I -> B -> A -> L -> E with the only child -     * pointer of this node pointing at the 'E' node, because remember that -     * we have characters at the edges of the graph, not inside the nodes -     * themselves. -     * -     * In order to show a real case imagine our node to also point to -     * another compressed node, that finally points at the node without -     * children, representing 'O': -     * -     *     "ANNIBALE" -> "SCO" -> [] -     * -     * When inserting we may face the following cases. Note that all the cases -     * require the insertion of a non compressed node with exactly two -     * children, except for the last case which just requires splitting a -     * compressed node. -     * -     * 1) Inserting "ANNIENTARE" -     * -     *               |B| -> "ALE" -> "SCO" -> [] -     *     "ANNI" -> |-| -     *               |E| -> (... continue algo ...) "NTARE" -> [] -     * -     * 2) Inserting "ANNIBALI" -     * -     *                  |E| -> "SCO" -> [] -     *     "ANNIBAL" -> |-| -     *                  |I| -> (... continue algo ...) [] -     * -     * 3) Inserting "AGO" (Like case 1, but set iscompr = 0 into original node) -     * -     *            |N| -> "NIBALE" -> "SCO" -> [] -     *     |A| -> |-| -     *            |G| -> (... continue algo ...) |O| -> [] -     * -     * 4) Inserting "CIAO" -     * -     *     |A| -> "NNIBALE" -> "SCO" -> [] -     *     |-| -     *     |C| -> (... continue algo ...) "IAO" -> [] -     * -     * 5) Inserting "ANNI" -     * -     *     "ANNI" -> "BALE" -> "SCO" -> [] -     * -     * The final algorithm for insertion covering all the above cases is as -     * follows. -     * -     * ============================= ALGO 1 ============================= -     * -     * For the above cases 1 to 4, that is, all cases where we stopped in -     * the middle of a compressed node for a character mismatch, do: -     * -     * Let $SPLITPOS be the zero-based index at which, in the -     * compressed node array of characters, we found the mismatching -     * character. For example if the node contains "ANNIBALE" and we add -     * "ANNIENTARE" the $SPLITPOS is 4, that is, the index at which the -     * mismatching character is found. -     * -     * 1. Save the current compressed node $NEXT pointer (the pointer to the -     *    child element, that is always present in compressed nodes). -     * -     * 2. Create "split node" having as child the non common letter -     *    at the compressed node. The other non common letter (at the key) -     *    will be added later as we continue the normal insertion algorithm -     *    at step "6". -     * -     * 3a. IF $SPLITPOS == 0: -     *     Replace the old node with the split node, by copying the auxiliary -     *     data if any. Fix parent's reference. Free old node eventually -     *     (we still need its data for the next steps of the algorithm). -     * -     * 3b. IF $SPLITPOS != 0: -     *     Trim the compressed node (reallocating it as well) in order to -     *     contain $splitpos characters. Change chilid pointer in order to link -     *     to the split node. If new compressed node len is just 1, set -     *     iscompr to 0 (layout is the same). Fix parent's reference. -     * -     * 4a. IF the postfix len (the length of the remaining string of the -     *     original compressed node after the split character) is non zero, -     *     create a "postfix node". If the postfix node has just one character -     *     set iscompr to 0, otherwise iscompr to 1. Set the postfix node -     *     child pointer to $NEXT. -     * -     * 4b. IF the postfix len is zero, just use $NEXT as postfix pointer. -     * -     * 5. Set child[0] of split node to postfix node. -     * -     * 6. Set the split node as the current node, set current index at child[1] -     *    and continue insertion algorithm as usually. -     * -     * ============================= ALGO 2 ============================= -     * -     * For case 5, that is, if we stopped in the middle of a compressed -     * node but no mismatch was found, do: -     * -     * Let $SPLITPOS be the zero-based index at which, in the -     * compressed node array of characters, we stopped iterating because -     * there were no more keys character to match. So in the example of -     * the node "ANNIBALE", addig the string "ANNI", the $SPLITPOS is 4. -     * -     * 1. Save the current compressed node $NEXT pointer (the pointer to the -     *    child element, that is always present in compressed nodes). -     * -     * 2. Create a "postfix node" containing all the characters from $SPLITPOS -     *    to the end. Use $NEXT as the postfix node child pointer. -     *    If the postfix node length is 1, set iscompr to 0. -     *    Set the node as a key with the associated value of the new -     *    inserted key. -     * -     * 3. Trim the current node to contain the first $SPLITPOS characters. -     *    As usually if the new node length is just 1, set iscompr to 0. -     *    Take the iskey / associated value as it was in the orignal node. -     *    Fix the parent's reference. -     * -     * 4. Set the postfix node as the only child pointer of the trimmed -     *    node created at step 1. -     */ - -    /* ------------------------- ALGORITHM 1 --------------------------- */ -    if (h->iscompr && i != len) { -        debugf("ALGO 1: Stopped at compressed node %.*s (%p)\n", -            h->size, h->data, (void*)h); -        debugf("Still to insert: %.*s\n", (int)(len-i), s+i); -        debugf("Splitting at %d: '%c'\n", j, ((char*)h->data)[j]); -        debugf("Other (key) letter is '%c'\n", s[i]); - -        /* 1: Save next pointer. */ -        raxNode **childfield = raxNodeLastChildPtr(h); -        raxNode *next; -        memcpy(&next,childfield,sizeof(next)); -        debugf("Next is %p\n", (void*)next); -        debugf("iskey %d\n", h->iskey); -        if (h->iskey) { -            debugf("key value is %p\n", raxGetData(h)); -        } - -        /* Set the length of the additional nodes we will need. */ -        size_t trimmedlen = j; -        size_t postfixlen = h->size - j - 1; -        int split_node_is_key = !trimmedlen && h->iskey && !h->isnull; -        size_t nodesize; - -        /* 2: Create the split node. Also allocate the other nodes we'll need -         *    ASAP, so that it will be simpler to handle OOM. */ -        raxNode *splitnode = raxNewNode(1, split_node_is_key); -        raxNode *trimmed = NULL; -        raxNode *postfix = NULL; - -        if (trimmedlen) { -            nodesize = sizeof(raxNode)+trimmedlen+sizeof(raxNode*); -            if (h->iskey && !h->isnull) nodesize += sizeof(void*); -            trimmed = rax_malloc(nodesize); -        } - -        if (postfixlen) { -            nodesize = sizeof(raxNode)+postfixlen+ -                       sizeof(raxNode*); -            postfix = rax_malloc(nodesize); -        } - -        /* OOM? Abort now that the tree is untouched. */ -        if (splitnode == NULL || -            (trimmedlen && trimmed == NULL) || -            (postfixlen && postfix == NULL)) -        { -            rax_free(splitnode); -            rax_free(trimmed); -            rax_free(postfix); -            errno = ENOMEM; -            return 0; -        } -        splitnode->data[0] = h->data[j]; - -        if (j == 0) { -            /* 3a: Replace the old node with the split node. */ -            if (h->iskey) { -                void *ndata = raxGetData(h); -                raxSetData(splitnode,ndata); -            } -            memcpy(parentlink,&splitnode,sizeof(splitnode)); -        } else { -            /* 3b: Trim the compressed node. */ -            trimmed->size = j; -            memcpy(trimmed->data,h->data,j); -            trimmed->iscompr = j > 1 ? 1 : 0; -            trimmed->iskey = h->iskey; -            trimmed->isnull = h->isnull; -            if (h->iskey && !h->isnull) { -                void *ndata = raxGetData(h); -                raxSetData(trimmed,ndata); -            } -            raxNode **cp = raxNodeLastChildPtr(trimmed); -            memcpy(cp,&splitnode,sizeof(splitnode)); -            memcpy(parentlink,&trimmed,sizeof(trimmed)); -            parentlink = cp; /* Set parentlink to splitnode parent. */ -            rax->numnodes++; -        } - -        /* 4: Create the postfix node: what remains of the original -         * compressed node after the split. */ -        if (postfixlen) { -            /* 4a: create a postfix node. */ -            postfix->iskey = 0; -            postfix->isnull = 0; -            postfix->size = postfixlen; -            postfix->iscompr = postfixlen > 1; -            memcpy(postfix->data,h->data+j+1,postfixlen); -            raxNode **cp = raxNodeLastChildPtr(postfix); -            memcpy(cp,&next,sizeof(next)); -            rax->numnodes++; -        } else { -            /* 4b: just use next as postfix node. */ -            postfix = next; -        } - -        /* 5: Set splitnode first child as the postfix node. */ -        raxNode **splitchild = raxNodeLastChildPtr(splitnode); -        memcpy(splitchild,&postfix,sizeof(postfix)); - -        /* 6. Continue insertion: this will cause the splitnode to -         * get a new child (the non common character at the currently -         * inserted key). */ -        rax_free(h); -        h = splitnode; -    } else if (h->iscompr && i == len) { -    /* ------------------------- ALGORITHM 2 --------------------------- */ -        debugf("ALGO 2: Stopped at compressed node %.*s (%p) j = %d\n", -            h->size, h->data, (void*)h, j); - -        /* Allocate postfix & trimmed nodes ASAP to fail for OOM gracefully. */ -        size_t postfixlen = h->size - j; -        size_t nodesize = sizeof(raxNode)+postfixlen+sizeof(raxNode*); -        if (data != NULL) nodesize += sizeof(void*); -        raxNode *postfix = rax_malloc(nodesize); - -        nodesize = sizeof(raxNode)+j+sizeof(raxNode*); -        if (h->iskey && !h->isnull) nodesize += sizeof(void*); -        raxNode *trimmed = rax_malloc(nodesize); - -        if (postfix == NULL || trimmed == NULL) { -            rax_free(postfix); -            rax_free(trimmed); -            errno = ENOMEM; -            return 0; -        } - -        /* 1: Save next pointer. */ -        raxNode **childfield = raxNodeLastChildPtr(h); -        raxNode *next; -        memcpy(&next,childfield,sizeof(next)); - -        /* 2: Create the postfix node. */ -        postfix->size = postfixlen; -        postfix->iscompr = postfixlen > 1; -        postfix->iskey = 1; -        postfix->isnull = 0; -        memcpy(postfix->data,h->data+j,postfixlen); -        raxSetData(postfix,data); -        raxNode **cp = raxNodeLastChildPtr(postfix); -        memcpy(cp,&next,sizeof(next)); -        rax->numnodes++; - -        /* 3: Trim the compressed node. */ -        trimmed->size = j; -        trimmed->iscompr = j > 1; -        trimmed->iskey = 0; -        trimmed->isnull = 0; -        memcpy(trimmed->data,h->data,j); -        memcpy(parentlink,&trimmed,sizeof(trimmed)); -        if (h->iskey) { -            void *aux = raxGetData(h); -            raxSetData(trimmed,aux); -        } - -        /* Fix the trimmed node child pointer to point to -         * the postfix node. */ -        cp = raxNodeLastChildPtr(trimmed); -        memcpy(cp,&postfix,sizeof(postfix)); - -        /* Finish! We don't need to contine with the insertion -         * algorithm for ALGO 2. The key is already inserted. */ -        rax->numele++; -        rax_free(h); -        return 1; /* Key inserted. */ -    } - -    /* We walked the radix tree as far as we could, but still there are left -     * chars in our string. We need to insert the missing nodes. */ -    while(i < len) { -        raxNode *child; - -        /* If this node is going to have a single child, and there -         * are other characters, so that that would result in a chain -         * of single-childed nodes, turn it into a compressed node. */ -        if (h->size == 0 && len-i > 1) { -            debugf("Inserting compressed node\n"); -            size_t comprsize = len-i; -            if (comprsize > RAX_NODE_MAX_SIZE) -                comprsize = RAX_NODE_MAX_SIZE; -            raxNode *newh = raxCompressNode(h,s+i,comprsize,&child); -            if (newh == NULL) goto oom; -            h = newh; -            memcpy(parentlink,&h,sizeof(h)); -            parentlink = raxNodeLastChildPtr(h); -            i += comprsize; -        } else { -            debugf("Inserting normal node\n"); -            raxNode **new_parentlink; -            raxNode *newh = raxAddChild(h,s[i],&child,&new_parentlink); -            if (newh == NULL) goto oom; -            h = newh; -            memcpy(parentlink,&h,sizeof(h)); -            parentlink = new_parentlink; -            i++; -        } -        rax->numnodes++; -        h = child; -    } -    raxNode *newh = raxReallocForData(h,data); -    if (newh == NULL) goto oom; -    h = newh; -    if (!h->iskey) rax->numele++; -    raxSetData(h,data); -    memcpy(parentlink,&h,sizeof(h)); -    return 1; /* Element inserted. */ - -oom: -    /* This code path handles out of memory after part of the sub-tree was -     * already modified. Set the node as a key, and then remove it. However we -     * do that only if the node is a terminal node, otherwise if the OOM -     * happened reallocating a node in the middle, we don't need to free -     * anything. */ -    if (h->size == 0) { -        h->isnull = 1; -        h->iskey = 1; -        rax->numele++; /* Compensate the next remove. */ -        assert(raxRemove(rax,s,i,NULL) != 0); -    } -    errno = ENOMEM; -    return 0; -} - -/* Overwriting insert. Just a wrapper for raxGenericInsert() that will - * update the element if there is already one for the same key. */ -int raxInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old) { -    return raxGenericInsert(rax,s,len,data,old,1); -} - -/* Non overwriting insert function: this if an element with the same key - * exists, the value is not updated and the function returns 0. - * This is a just a wrapper for raxGenericInsert(). */ -int raxTryInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old) { -    return raxGenericInsert(rax,s,len,data,old,0); -} - -/* Find a key in the rax, returns raxNotFound special void pointer value - * if the item was not found, otherwise the value associated with the - * item is returned. */ -void *raxFind(rax *rax, unsigned char *s, size_t len) { -    raxNode *h; - -    debugf("### Lookup: %.*s\n", (int)len, s); -    int splitpos = 0; -    size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,NULL); -    if (i != len || (h->iscompr && splitpos != 0) || !h->iskey) -        return raxNotFound; -    return raxGetData(h); -} - -/* Return the memory address where the 'parent' node stores the specified - * 'child' pointer, so that the caller can update the pointer with another - * one if needed. The function assumes it will find a match, otherwise the - * operation is an undefined behavior (it will continue scanning the - * memory without any bound checking). */ -raxNode **raxFindParentLink(raxNode *parent, raxNode *child) { -    raxNode **cp = raxNodeFirstChildPtr(parent); -    raxNode *c; -    while(1) { -        memcpy(&c,cp,sizeof(c)); -        if (c == child) break; -        cp++; -    } -    return cp; -} - -/* Low level child removal from node. The new node pointer (after the child - * removal) is returned. Note that this function does not fix the pointer - * of the parent node in its parent, so this task is up to the caller. - * The function never fails for out of memory. */ -raxNode *raxRemoveChild(raxNode *parent, raxNode *child) { -    debugnode("raxRemoveChild before", parent); -    /* If parent is a compressed node (having a single child, as for definition -     * of the data structure), the removal of the child consists into turning -     * it into a normal node without children. */ -    if (parent->iscompr) { -        void *data = NULL; -        if (parent->iskey) data = raxGetData(parent); -        parent->isnull = 0; -        parent->iscompr = 0; -        parent->size = 0; -        if (parent->iskey) raxSetData(parent,data); -        debugnode("raxRemoveChild after", parent); -        return parent; -    } - -    /* Otherwise we need to scan for the children pointer and memmove() -     * accordingly. -     * -     * 1. To start we seek the first element in both the children -     *    pointers and edge bytes in the node. */ -    raxNode **cp = raxNodeFirstChildPtr(parent); -    raxNode **c = cp; -    unsigned char *e = parent->data; - -    /* 2. Search the child pointer to remove inside the array of children -     *    pointers. */ -    while(1) { -        raxNode *aux; -        memcpy(&aux,c,sizeof(aux)); -        if (aux == child) break; -        c++; -        e++; -    } - -    /* 3. Remove the edge and the pointer by memmoving the remaining children -     *    pointer and edge bytes one position before. */ -    int taillen = parent->size - (e - parent->data) - 1; -    debugf("raxRemoveChild tail len: %d\n", taillen); -    memmove(e,e+1,taillen); - -    /* Since we have one data byte less, also child pointers start one byte -     * before now. */ -    memmove(((char*)cp)-1,cp,(parent->size-taillen-1)*sizeof(raxNode**)); - -    /* Move the remaining "tail" pointer at the right position as well. */ -    size_t valuelen = (parent->iskey && !parent->isnull) ? sizeof(void*) : 0; -    memmove(((char*)c)-1,c+1,taillen*sizeof(raxNode**)+valuelen); - -    /* 4. Update size. */ -    parent->size--; - -    /* realloc the node according to the theoretical memory usage, to free -     * data if we are over-allocating right now. */ -    raxNode *newnode = rax_realloc(parent,raxNodeCurrentLength(parent)); -    if (newnode) { -        debugnode("raxRemoveChild after", newnode); -    } -    /* Note: if rax_realloc() fails we just return the old address, which -     * is valid. */ -    return newnode ? newnode : parent; -} - -/* Remove the specified item. Returns 1 if the item was found and - * deleted, 0 otherwise. */ -int raxRemove(rax *rax, unsigned char *s, size_t len, void **old) { -    raxNode *h; -    raxStack ts; - -    debugf("### Delete: %.*s\n", (int)len, s); -    raxStackInit(&ts); -    int splitpos = 0; -    size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,&ts); -    if (i != len || (h->iscompr && splitpos != 0) || !h->iskey) { -        raxStackFree(&ts); -        return 0; -    } -    if (old) *old = raxGetData(h); -    h->iskey = 0; -    rax->numele--; - -    /* If this node has no children, the deletion needs to reclaim the -     * no longer used nodes. This is an iterative process that needs to -     * walk the three upward, deleting all the nodes with just one child -     * that are not keys, until the head of the rax is reached or the first -     * node with more than one child is found. */ - -    int trycompress = 0; /* Will be set to 1 if we should try to optimize the -                            tree resulting from the deletion. */ - -    if (h->size == 0) { -        debugf("Key deleted in node without children. Cleanup needed.\n"); -        raxNode *child = NULL; -        while(h != rax->head) { -            child = h; -            debugf("Freeing child %p [%.*s] key:%d\n", (void*)child, -                (int)child->size, (char*)child->data, child->iskey); -            rax_free(child); -            rax->numnodes--; -            h = raxStackPop(&ts); -             /* If this node has more then one child, or actually holds -              * a key, stop here. */ -            if (h->iskey || (!h->iscompr && h->size != 1)) break; -        } -        if (child) { -            debugf("Unlinking child %p from parent %p\n", -                (void*)child, (void*)h); -            raxNode *new = raxRemoveChild(h,child); -            if (new != h) { -                raxNode *parent = raxStackPeek(&ts); -                raxNode **parentlink; -                if (parent == NULL) { -                    parentlink = &rax->head; -                } else { -                    parentlink = raxFindParentLink(parent,h); -                } -                memcpy(parentlink,&new,sizeof(new)); -            } - -            /* If after the removal the node has just a single child -             * and is not a key, we need to try to compress it. */ -            if (new->size == 1 && new->iskey == 0) { -                trycompress = 1; -                h = new; -            } -        } -    } else if (h->size == 1) { -        /* If the node had just one child, after the removal of the key -         * further compression with adjacent nodes is pontentially possible. */ -        trycompress = 1; -    } - -    /* Don't try node compression if our nodes pointers stack is not -     * complete because of OOM while executing raxLowWalk() */ -    if (trycompress && ts.oom) trycompress = 0; - -    /* Recompression: if trycompress is true, 'h' points to a radix tree node -     * that changed in a way that could allow to compress nodes in this -     * sub-branch. Compressed nodes represent chains of nodes that are not -     * keys and have a single child, so there are two deletion events that -     * may alter the tree so that further compression is needed: -     * -     * 1) A node with a single child was a key and now no longer is a key. -     * 2) A node with two children now has just one child. -     * -     * We try to navigate upward till there are other nodes that can be -     * compressed, when we reach the upper node which is not a key and has -     * a single child, we scan the chain of children to collect the -     * compressable part of the tree, and replace the current node with the -     * new one, fixing the child pointer to reference the first non -     * compressable node. -     * -     * Example of case "1". A tree stores the keys "FOO" = 1 and -     * "FOOBAR" = 2: -     * -     * -     * "FOO" -> "BAR" -> [] (2) -     *           (1) -     * -     * After the removal of "FOO" the tree can be compressed as: -     * -     * "FOOBAR" -> [] (2) -     * -     * -     * Example of case "2". A tree stores the keys "FOOBAR" = 1 and -     * "FOOTER" = 2: -     * -     *          |B| -> "AR" -> [] (1) -     * "FOO" -> |-| -     *          |T| -> "ER" -> [] (2) -     * -     * After the removal of "FOOTER" the resulting tree is: -     * -     * "FOO" -> |B| -> "AR" -> [] (1) -     * -     * That can be compressed into: -     * -     * "FOOBAR" -> [] (1) -     */ -    if (trycompress) { -        debugf("After removing %.*s:\n", (int)len, s); -        debugnode("Compression may be needed",h); -        debugf("Seek start node\n"); - -        /* Try to reach the upper node that is compressible. -         * At the end of the loop 'h' will point to the first node we -         * can try to compress and 'parent' to its parent. */ -        raxNode *parent; -        while(1) { -            parent = raxStackPop(&ts); -            if (!parent || parent->iskey || -                (!parent->iscompr && parent->size != 1)) break; -            h = parent; -            debugnode("Going up to",h); -        } -        raxNode *start = h; /* Compression starting node. */ - -        /* Scan chain of nodes we can compress. */ -        size_t comprsize = h->size; -        int nodes = 1; -        while(h->size != 0) { -            raxNode **cp = raxNodeLastChildPtr(h); -            memcpy(&h,cp,sizeof(h)); -            if (h->iskey || (!h->iscompr && h->size != 1)) break; -            /* Stop here if going to the next node would result into -             * a compressed node larger than h->size can hold. */ -            if (comprsize + h->size > RAX_NODE_MAX_SIZE) break; -            nodes++; -            comprsize += h->size; -        } -        if (nodes > 1) { -            /* If we can compress, create the new node and populate it. */ -            size_t nodesize = -                sizeof(raxNode)+comprsize+sizeof(raxNode*); -            raxNode *new = rax_malloc(nodesize); -            /* An out of memory here just means we cannot optimize this -             * node, but the tree is left in a consistent state. */ -            if (new == NULL) { -                raxStackFree(&ts); -                return 1; -            } -            new->iskey = 0; -            new->isnull = 0; -            new->iscompr = 1; -            new->size = comprsize; -            rax->numnodes++; - -            /* Scan again, this time to populate the new node content and -             * to fix the new node child pointer. At the same time we free -             * all the nodes that we'll no longer use. */ -            comprsize = 0; -            h = start; -            while(h->size != 0) { -                memcpy(new->data+comprsize,h->data,h->size); -                comprsize += h->size; -                raxNode **cp = raxNodeLastChildPtr(h); -                raxNode *tofree = h; -                memcpy(&h,cp,sizeof(h)); -                rax_free(tofree); rax->numnodes--; -                if (h->iskey || (!h->iscompr && h->size != 1)) break; -            } -            debugnode("New node",new); - -            /* Now 'h' points to the first node that we still need to use, -             * so our new node child pointer will point to it. */ -            raxNode **cp = raxNodeLastChildPtr(new); -            memcpy(cp,&h,sizeof(h)); - -            /* Fix parent link. */ -            if (parent) { -                raxNode **parentlink = raxFindParentLink(parent,start); -                memcpy(parentlink,&new,sizeof(new)); -            } else { -                rax->head = new; -            } - -            debugf("Compressed %d nodes, %d total bytes\n", -                nodes, (int)comprsize); -        } -    } -    raxStackFree(&ts); -    return 1; -} - -/* This is the core of raxFree(): performs a depth-first scan of the - * tree and releases all the nodes found. */ -void raxRecursiveFree(rax *rax, raxNode *n, void (*free_callback)(void*)) { -    debugnode("free traversing",n); -    int numchildren = n->iscompr ? 1 : n->size; -    raxNode **cp = raxNodeLastChildPtr(n); -    while(numchildren--) { -        raxNode *child; -        memcpy(&child,cp,sizeof(child)); -        raxRecursiveFree(rax,child,free_callback); -        cp--; -    } -    debugnode("free depth-first",n); -    if (free_callback && n->iskey && !n->isnull) -        free_callback(raxGetData(n)); -    rax_free(n); -    rax->numnodes--; -} - -/* Free a whole radix tree, calling the specified callback in order to - * free the auxiliary data. */ -void raxFreeWithCallback(rax *rax, void (*free_callback)(void*)) { -    raxRecursiveFree(rax,rax->head,free_callback); -    assert(rax->numnodes == 0); -    rax_free(rax); -} - -/* Free a whole radix tree. */ -void raxFree(rax *rax) { -    raxFreeWithCallback(rax,NULL); -} - -/* ------------------------------- Iterator --------------------------------- */ - -/* Initialize a Rax iterator. This call should be performed a single time - * to initialize the iterator, and must be followed by a raxSeek() call, - * otherwise the raxPrev()/raxNext() functions will just return EOF. */ -void raxStart(raxIterator *it, rax *rt) { -    it->flags = RAX_ITER_EOF; /* No crash if the iterator is not seeked. */ -    it->rt = rt; -    it->key_len = 0; -    it->key = it->key_static_string; -    it->key_max = RAX_ITER_STATIC_LEN; -    it->data = NULL; -    raxStackInit(&it->stack); -} - -/* Append characters at the current key string of the iterator 'it'. This - * is a low level function used to implement the iterator, not callable by - * the user. Returns 0 on out of memory, otherwise 1 is returned. */ -int raxIteratorAddChars(raxIterator *it, unsigned char *s, size_t len) { -    if (it->key_max < it->key_len+len) { -        unsigned char *old = (it->key == it->key_static_string) ? NULL : -                                                                  it->key; -        size_t new_max = (it->key_len+len)*2; -        it->key = rax_realloc(old,new_max); -        if (it->key == NULL) { -            it->key = (!old) ? it->key_static_string : old; -            errno = ENOMEM; -            return 0; -        } -        if (old == NULL) memcpy(it->key,it->key_static_string,it->key_len); -        it->key_max = new_max; -    } -    /* Use memmove since there could be an overlap between 's' and -     * it->key when we use the current key in order to re-seek. */ -    memmove(it->key+it->key_len,s,len); -    it->key_len += len; -    return 1; -} - -/* Remove the specified number of chars from the right of the current - * iterator key. */ -void raxIteratorDelChars(raxIterator *it, size_t count) { -    it->key_len -= count; -} - -/* Do an iteration step towards the next element. At the end of the step the - * iterator key will represent the (new) current key. If it is not possible - * to step in the specified direction since there are no longer elements, the - * iterator is flagged with RAX_ITER_EOF. - * - * If 'noup' is true the function starts directly scanning for the next - * lexicographically smaller children, and the current node is already assumed - * to be the parent of the last key node, so the first operation to go back to - * the parent will be skipped. This option is used by raxSeek() when - * implementing seeking a non existing element with the ">" or "<" options: - * the starting node is not a key in that particular case, so we start the scan - * from a node that does not represent the key set. - * - * The function returns 1 on success or 0 on out of memory. */ -int raxIteratorNextStep(raxIterator *it, int noup) { -    if (it->flags & RAX_ITER_EOF) { -        return 1; -    } else if (it->flags & RAX_ITER_JUST_SEEKED) { -        it->flags &= ~RAX_ITER_JUST_SEEKED; -        return 1; -    } - -    /* Save key len, stack items and the node where we are currently -     * so that on iterator EOF we can restore the current key and state. */ -    size_t orig_key_len = it->key_len; -    size_t orig_stack_items = it->stack.items; -    raxNode *orig_node = it->node; - -    while(1) { -        int children = it->node->iscompr ? 1 : it->node->size; -        if (!noup && children) { -            debugf("GO DEEPER\n"); -            /* Seek the lexicographically smaller key in this subtree, which -             * is the first one found always going torwards the first child -             * of every successive node. */ -            if (!raxStackPush(&it->stack,it->node)) return 0; -            raxNode **cp = raxNodeFirstChildPtr(it->node); -            if (!raxIteratorAddChars(it,it->node->data, -                it->node->iscompr ? it->node->size : 1)) return 0; -            memcpy(&it->node,cp,sizeof(it->node)); -            /* For "next" step, stop every time we find a key along the -             * way, since the key is lexicograhically smaller compared to -             * what follows in the sub-children. */ -            if (it->node->iskey) { -                it->data = raxGetData(it->node); -                return 1; -            } -        } else { -            /* If we finished exporing the previous sub-tree, switch to the -             * new one: go upper until a node is found where there are -             * children representing keys lexicographically greater than the -             * current key. */ -            while(1) { -                int old_noup = noup; - -                /* Already on head? Can't go up, iteration finished. */ -                if (!noup && it->node == it->rt->head) { -                    it->flags |= RAX_ITER_EOF; -                    it->stack.items = orig_stack_items; -                    it->key_len = orig_key_len; -                    it->node = orig_node; -                    return 1; -                } -                /* If there are no children at the current node, try parent's -                 * next child. */ -                unsigned char prevchild = it->key[it->key_len-1]; -                if (!noup) { -                    it->node = raxStackPop(&it->stack); -                } else { -                    noup = 0; -                } -                /* Adjust the current key to represent the node we are -                 * at. */ -                int todel = it->node->iscompr ? it->node->size : 1; -                raxIteratorDelChars(it,todel); - -                /* Try visiting the next child if there was at least one -                 * additional child. */ -                if (!it->node->iscompr && it->node->size > (old_noup ? 0 : 1)) { -                    raxNode **cp = raxNodeFirstChildPtr(it->node); -                    int i = 0; -                    while (i < it->node->size) { -                        debugf("SCAN NEXT %c\n", it->node->data[i]); -                        if (it->node->data[i] > prevchild) break; -                        i++; -                        cp++; -                    } -                    if (i != it->node->size) { -                        debugf("SCAN found a new node\n"); -                        raxIteratorAddChars(it,it->node->data+i,1); -                        if (!raxStackPush(&it->stack,it->node)) return 0; -                        memcpy(&it->node,cp,sizeof(it->node)); -                        if (it->node->iskey) { -                            it->data = raxGetData(it->node); -                            return 1; -                        } -                        break; -                    } -                } -            } -        } -    } -} - -/* Seek the grestest key in the subtree at the current node. Return 0 on - * out of memory, otherwise 1. This is an helper function for different - * iteration functions below. */ -int raxSeekGreatest(raxIterator *it) { -    while(it->node->size) { -        if (it->node->iscompr) { -            if (!raxIteratorAddChars(it,it->node->data, -                it->node->size)) return 0; -        } else { -            if (!raxIteratorAddChars(it,it->node->data+it->node->size-1,1)) -                return 0; -        } -        raxNode **cp = raxNodeLastChildPtr(it->node); -        if (!raxStackPush(&it->stack,it->node)) return 0; -        memcpy(&it->node,cp,sizeof(it->node)); -    } -    return 1; -} - -/* Like raxIteratorNextStep() but implements an iteration step moving - * to the lexicographically previous element. The 'noup' option has a similar - * effect to the one of raxIteratorPrevSte(). */ -int raxIteratorPrevStep(raxIterator *it, int noup) { -    if (it->flags & RAX_ITER_EOF) { -        return 1; -    } else if (it->flags & RAX_ITER_JUST_SEEKED) { -        it->flags &= ~RAX_ITER_JUST_SEEKED; -        return 1; -    } - -    /* Save key len, stack items and the node where we are currently -     * so that on iterator EOF we can restore the current key and state. */ -    size_t orig_key_len = it->key_len; -    size_t orig_stack_items = it->stack.items; -    raxNode *orig_node = it->node; - -    while(1) { -        int old_noup = noup; - -        /* Already on head? Can't go up, iteration finished. */ -        if (!noup && it->node == it->rt->head) { -            it->flags |= RAX_ITER_EOF; -            it->stack.items = orig_stack_items; -            it->key_len = orig_key_len; -            it->node = orig_node; -            return 1; -        } - -        unsigned char prevchild = it->key[it->key_len-1]; -        if (!noup) { -            it->node = raxStackPop(&it->stack); -        } else { -            noup = 0; -        } - -        /* Adjust the current key to represent the node we are -         * at. */ -        int todel = it->node->iscompr ? it->node->size : 1; -        raxIteratorDelChars(it,todel); - -        /* Try visiting the prev child if there is at least one -         * child. */ -        if (!it->node->iscompr && it->node->size > (old_noup ? 0 : 1)) { -            raxNode **cp = raxNodeLastChildPtr(it->node); -            int i = it->node->size-1; -            while (i >= 0) { -                debugf("SCAN PREV %c\n", it->node->data[i]); -                if (it->node->data[i] < prevchild) break; -                i--; -                cp--; -            } -            /* If we found a new subtree to explore in this node, -             * go deeper following all the last children in order to -             * find the key lexicographically greater. */ -            if (i != -1) { -                debugf("SCAN found a new node\n"); -                /* Enter the node we just found. */ -                if (!raxIteratorAddChars(it,it->node->data+i,1)) return 0; -                if (!raxStackPush(&it->stack,it->node)) return 0; -                memcpy(&it->node,cp,sizeof(it->node)); -                /* Seek sub-tree max. */ -                if (!raxSeekGreatest(it)) return 0; -            } -        } - -        /* Return the key: this could be the key we found scanning a new -         * subtree, or if we did not find a new subtree to explore here, -         * before giving up with this node, check if it's a key itself. */ -        if (it->node->iskey) { -            it->data = raxGetData(it->node); -            return 1; -        } -    } -} - -/* Seek an iterator at the specified element. - * Return 0 if the seek failed for syntax error or out of memory. Otherwise - * 1 is returned. When 0 is returned for out of memory, errno is set to - * the ENOMEM value. */ -int raxSeek(raxIterator *it, const char *op, unsigned char *ele, size_t len) { -    int eq = 0, lt = 0, gt = 0, first = 0, last = 0; - -    it->stack.items = 0; /* Just resetting. Intialized by raxStart(). */ -    it->flags |= RAX_ITER_JUST_SEEKED; -    it->flags &= ~RAX_ITER_EOF; -    it->key_len = 0; -    it->node = NULL; - -    /* Set flags according to the operator used to perform the seek. */ -    if (op[0] == '>') { -        gt = 1; -        if (op[1] == '=') eq = 1; -    } else if (op[0] == '<') { -        lt = 1; -        if (op[1] == '=') eq = 1; -    } else if (op[0] == '=') { -        eq = 1; -    } else if (op[0] == '^') { -        first = 1; -    } else if (op[0] == '$') { -        last = 1; -    } else { -        errno = 0; -        return 0; /* Error. */ -    } - -    /* If there are no elements, set the EOF condition immediately and -     * return. */ -    if (it->rt->numele == 0) { -        it->flags |= RAX_ITER_EOF; -        return 1; -    } - -    if (first) { -        /* Seeking the first key greater or equal to the empty string -         * is equivalent to seeking the smaller key available. */ -        return raxSeek(it,">=",NULL,0); -    } - -    if (last) { -        /* Find the greatest key taking always the last child till a -         * final node is found. */ -        it->node = it->rt->head; -        if (!raxSeekGreatest(it)) return 0; -        assert(it->node->iskey); -        it->data = raxGetData(it->node); -        return 1; -    } - -    /* We need to seek the specified key. What we do here is to actually -     * perform a lookup, and later invoke the prev/next key code that -     * we already use for iteration. */ -    int splitpos = 0; -    size_t i = raxLowWalk(it->rt,ele,len,&it->node,NULL,&splitpos,&it->stack); - -    /* Return OOM on incomplete stack info. */ -    if (it->stack.oom) return 0; - -    if (eq && i == len && (!it->node->iscompr || splitpos == 0) && -        it->node->iskey) -    { -        /* We found our node, since the key matches and we have an -         * "equal" condition. */ -        if (!raxIteratorAddChars(it,ele,len)) return 0; /* OOM. */ -        it->data = raxGetData(it->node); -    } else if (lt || gt) { -        /* Exact key not found or eq flag not set. We have to set as current -         * key the one represented by the node we stopped at, and perform -         * a next/prev operation to seek. To reconstruct the key at this node -         * we start from the parent and go to the current node, accumulating -         * the characters found along the way. */ -        if (!raxStackPush(&it->stack,it->node)) return 0; -        for (size_t j = 1; j < it->stack.items; j++) { -            raxNode *parent = it->stack.stack[j-1]; -            raxNode *child = it->stack.stack[j]; -            if (parent->iscompr) { -                if (!raxIteratorAddChars(it,parent->data,parent->size)) -                    return 0; -            } else { -                raxNode **cp = raxNodeFirstChildPtr(parent); -                unsigned char *p = parent->data; -                while(1) { -                    raxNode *aux; -                    memcpy(&aux,cp,sizeof(aux)); -                    if (aux == child) break; -                    cp++; -                    p++; -                } -                if (!raxIteratorAddChars(it,p,1)) return 0; -            } -        } -        raxStackPop(&it->stack); - -        /* We need to set the iterator in the correct state to call next/prev -         * step in order to seek the desired element. */ -        debugf("After initial seek: i=%d len=%d key=%.*s\n", -            (int)i, (int)len, (int)it->key_len, it->key); -        if (i != len && !it->node->iscompr) { -            /* If we stopped in the middle of a normal node because of a -             * mismatch, add the mismatching character to the current key -             * and call the iterator with the 'noup' flag so that it will try -             * to seek the next/prev child in the current node directly based -             * on the mismatching character. */ -            if (!raxIteratorAddChars(it,ele+i,1)) return 0; -            debugf("Seek normal node on mismatch: %.*s\n", -                (int)it->key_len, (char*)it->key); - -            it->flags &= ~RAX_ITER_JUST_SEEKED; -            if (lt && !raxIteratorPrevStep(it,1)) return 0; -            if (gt && !raxIteratorNextStep(it,1)) return 0; -            it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */ -        } else if (i != len && it->node->iscompr) { -            debugf("Compressed mismatch: %.*s\n", -                (int)it->key_len, (char*)it->key); -            /* In case of a mismatch within a compressed node. */ -            int nodechar = it->node->data[splitpos]; -            int keychar = ele[i]; -            it->flags &= ~RAX_ITER_JUST_SEEKED; -            if (gt) { -                /* If the key the compressed node represents is greater -                 * than our seek element, continue forward, otherwise set the -                 * state in order to go back to the next sub-tree. */ -                if (nodechar > keychar) { -                    if (!raxIteratorNextStep(it,0)) return 0; -                } else { -                    if (!raxIteratorAddChars(it,it->node->data,it->node->size)) -                        return 0; -                    if (!raxIteratorNextStep(it,1)) return 0; -                } -            } -            if (lt) { -                /* If the key the compressed node represents is smaller -                 * than our seek element, seek the greater key in this -                 * subtree, otherwise set the state in order to go back to -                 * the previous sub-tree. */ -                if (nodechar < keychar) { -                    if (!raxSeekGreatest(it)) return 0; -                    it->data = raxGetData(it->node); -                } else { -                    if (!raxIteratorAddChars(it,it->node->data,it->node->size)) -                        return 0; -                    if (!raxIteratorPrevStep(it,1)) return 0; -                } -            } -            it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */ -        } else { -            debugf("No mismatch: %.*s\n", -                (int)it->key_len, (char*)it->key); -            /* If there was no mismatch we are into a node representing the -             * key, (but which is not a key or the seek operator does not -             * include 'eq'), or we stopped in the middle of a compressed node -             * after processing all the key. Continue iterating as this was -             * a legitimate key we stopped at. */ -            it->flags &= ~RAX_ITER_JUST_SEEKED; -            if (it->node->iscompr && it->node->iskey && splitpos && lt) { -                /* If we stopped in the middle of a compressed node with -                 * perfect match, and the condition is to seek a key "<" than -                 * the specified one, then if this node is a key it already -                 * represents our match. For instance we may have nodes: -                 * -                 * "f" -> "oobar" = 1 -> "" = 2 -                 * -                 * Representing keys "f" = 1, "foobar" = 2. A seek for -                 * the key < "foo" will stop in the middle of the "oobar" -                 * node, but will be our match, representing the key "f". -                 * -                 * So in that case, we don't seek backward. */ -            } else { -                if (gt && !raxIteratorNextStep(it,0)) return 0; -                if (lt && !raxIteratorPrevStep(it,0)) return 0; -            } -            it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */ -        } -    } else { -        /* If we are here just eq was set but no match was found. */ -        it->flags |= RAX_ITER_EOF; -        return 1; -    } -    return 1; -} - -/* Go to the next element in the scope of the iterator 'it'. - * If EOF (or out of memory) is reached, 0 is returned, otherwise 1 is - * returned. In case 0 is returned because of OOM, errno is set to ENOMEM. */ -int raxNext(raxIterator *it) { -    if (!raxIteratorNextStep(it,0)) { -        errno = ENOMEM; -        return 0; -    } -    if (it->flags & RAX_ITER_EOF) { -        errno = 0; -        return 0; -    } -    return 1; -} - -/* Go to the previous element in the scope of the iterator 'it'. - * If EOF (or out of memory) is reached, 0 is returned, otherwise 1 is - * returned. In case 0 is returned because of OOM, errno is set to ENOMEM. */ -int raxPrev(raxIterator *it) { -    if (!raxIteratorPrevStep(it,0)) { -        errno = ENOMEM; -        return 0; -    } -    if (it->flags & RAX_ITER_EOF) { -        errno = 0; -        return 0; -    } -    return 1; -} - -/* Perform a random walk starting in the current position of the iterator. - * Return 0 if the tree is empty or on out of memory. Otherwise 1 is returned - * and the iterator is set to the node reached after doing a random walk - * of 'steps' steps. If the 'steps' argument is 0, the random walk is performed - * using a random number of steps between 1 and two times the logarithm of - * the number of elements. - * - * NOTE: if you use this function to generate random elements from the radix - * tree, expect a disappointing distribution. A random walk produces good - * random elements if the tree is not sparse, however in the case of a radix - * tree certain keys will be reported much more often than others. At least - * this function should be able to expore every possible element eventually. */ -int raxRandomWalk(raxIterator *it, size_t steps) { -    if (it->rt->numele == 0) { -        it->flags |= RAX_ITER_EOF; -        return 0; -    } - -    if (steps == 0) { -        size_t fle = floor(log(it->rt->numele)); -        fle *= 2; -        steps = 1 + rand() % fle; -    } - -    raxNode *n = it->node; -    while(steps > 0 || !n->iskey) { -        int numchildren = n->iscompr ? 1 : n->size; -        int r = rand() % (numchildren+(n != it->rt->head)); - -        if (r == numchildren) { -            /* Go up to parent. */ -            n = raxStackPop(&it->stack); -            int todel = n->iscompr ? n->size : 1; -            raxIteratorDelChars(it,todel); -        } else { -            /* Select a random child. */ -            if (n->iscompr) { -                if (!raxIteratorAddChars(it,n->data,n->size)) return 0; -            } else { -                if (!raxIteratorAddChars(it,n->data+r,1)) return 0; -            } -            raxNode **cp = raxNodeFirstChildPtr(n)+r; -            if (!raxStackPush(&it->stack,n)) return 0; -            memcpy(&n,cp,sizeof(n)); -        } -        if (n->iskey) steps--; -    } -    it->node = n; -    return 1; -} - -/* Compare the key currently pointed by the iterator to the specified - * key according to the specified operator. Returns 1 if the comparison is - * true, otherwise 0 is returned. */ -int raxCompare(raxIterator *iter, const char *op, unsigned char *key, size_t key_len) { -    int eq = 0, lt = 0, gt = 0; - -    if (op[0] == '=' || op[1] == '=') eq = 1; -    if (op[0] == '>') gt = 1; -    else if (op[0] == '<') lt = 1; -    else if (op[1] != '=') return 0; /* Syntax error. */ - -    size_t minlen = key_len < iter->key_len ? key_len : iter->key_len; -    int cmp = memcmp(iter->key,key,minlen); - -    /* Handle == */ -    if (lt == 0 && gt == 0) return cmp == 0 && key_len == iter->key_len; - -    /* Handle >, >=, <, <= */ -    if (cmp == 0) { -        /* Same prefix: longer wins. */ -        if (eq && key_len == iter->key_len) return 1; -        else if (lt) return iter->key_len < key_len; -        else if (gt) return iter->key_len > key_len; -    } if (cmp > 0) { -        return gt ? 1 : 0; -    } else /* (cmp < 0) */ { -        return lt ? 1 : 0; -    } -} - -/* Free the iterator. */ -void raxStop(raxIterator *it) { -    if (it->key != it->key_static_string) rax_free(it->key); -    raxStackFree(&it->stack); -} - -/* Return if the iterator is in an EOF state. This happens when raxSeek() - * failed to seek an appropriate element, so that raxNext() or raxPrev() - * will return zero, or when an EOF condition was reached while iterating - * with raxNext() and raxPrev(). */ -int raxEOF(raxIterator *it) { -    return it->flags & RAX_ITER_EOF; -} - -/* Return the number of elements inside the radix tree. */ -uint64_t raxSize(rax *rax) { -    return rax->numele; -} - -/* ----------------------------- Introspection ------------------------------ */ - -/* This function is mostly used for debugging and learning purposes. - * It shows an ASCII representation of a tree on standard output, outling - * all the nodes and the contained keys. - * - * The representation is as follow: - * - *  "foobar" (compressed node) - *  [abc] (normal node with three children) - *  [abc]=0x12345678 (node is a key, pointing to value 0x12345678) - *  [] (a normal empty node) - * - *  Children are represented in new idented lines, each children prefixed by - *  the "`-(x)" string, where "x" is the edge byte. - * - *  [abc] - *   `-(a) "ladin" - *   `-(b) [kj] - *   `-(c) [] - * - *  However when a node has a single child the following representation - *  is used instead: - * - *  [abc] -> "ladin" -> [] - */ - -/* The actual implementation of raxShow(). */ -void raxRecursiveShow(int level, int lpad, raxNode *n) { -    char s = n->iscompr ? '"' : '['; -    char e = n->iscompr ? '"' : ']'; - -    int numchars = printf("%c%.*s%c", s, n->size, n->data, e); -    if (n->iskey) { -        numchars += printf("=%p",raxGetData(n)); -    } - -    int numchildren = n->iscompr ? 1 : n->size; -    /* Note that 7 and 4 magic constants are the string length -     * of " `-(x) " and " -> " respectively. */ -    if (level) { -        lpad += (numchildren > 1) ? 7 : 4; -        if (numchildren == 1) lpad += numchars; -    } -    raxNode **cp = raxNodeFirstChildPtr(n); -    for (int i = 0; i < numchildren; i++) { -        char *branch = " `-(%c) "; -        if (numchildren > 1) { -            printf("\n"); -            for (int j = 0; j < lpad; j++) putchar(' '); -            printf(branch,n->data[i]); -        } else { -            printf(" -> "); -        } -        raxNode *child; -        memcpy(&child,cp,sizeof(child)); -        raxRecursiveShow(level+1,lpad,child); -        cp++; -    } -} - -/* Show a tree, as outlined in the comment above. */ -void raxShow(rax *rax) { -    raxRecursiveShow(0,0,rax->head); -    putchar('\n'); -} - -/* Used by debugnode() macro to show info about a given node. */ -void raxDebugShowNode(const char *msg, raxNode *n) { -    printf("%s: %p [%.*s] key:%d size:%d children:", -        msg, (void*)n, (int)n->size, (char*)n->data, n->iskey, n->size); -    int numcld = n->iscompr ? 1 : n->size; -    raxNode **cldptr = raxNodeLastChildPtr(n) - (numcld-1); -    while(numcld--) { -        raxNode *child; -        memcpy(&child,cldptr,sizeof(child)); -        cldptr++; -        printf("%p ", (void*)child); -    } -    printf("\n"); -    fflush(stdout); -} - - @@ -1,164 +0,0 @@ -#ifndef RAX_H -#define RAX_H - -#include <stdint.h> - -/* Representation of a radix tree as implemented in this file, that contains - * the strings "foo", "foobar" and "footer" after the insertion of each - * word. When the node represents a key inside the radix tree, we write it - * between [], otherwise it is written between (). - * - * This is the vanilla representation: - * - *              (f) "" - *                \ - *                (o) "f" - *                  \ - *                  (o) "fo" - *                    \ - *                  [t   b] "foo" - *                  /     \ - *         "foot" (e)     (a) "foob" - *                /         \ - *      "foote" (r)         (r) "fooba" - *              /             \ - *    "footer" []             [] "foobar" - * - * However, this implementation implements a very common optimization where - * successive nodes having a single child are "compressed" into the node - * itself as a string of characters, each representing a next-level child, - * and only the link to the node representing the last character node is - * provided inside the representation. So the above representation is turend - * into: - * - *                  ["foo"] "" - *                     | - *                  [t   b] "foo" - *                  /     \ - *        "foot" ("er")    ("ar") "foob" - *                 /          \ - *       "footer" []          [] "foobar" - * - * However this optimization makes the implementation a bit more complex. - * For instance if a key "first" is added in the above radix tree, a - * "node splitting" operation is needed, since the "foo" prefix is no longer - * composed of nodes having a single child one after the other. This is the - * above tree and the resulting node splitting after this event happens: - * - * - *                    (f) "" - *                    / - *                 (i o) "f" - *                 /   \ - *    "firs"  ("rst")  (o) "fo" - *              /        \ - *    "first" []       [t   b] "foo" - *                     /     \ - *           "foot" ("er")    ("ar") "foob" - *                    /          \ - *          "footer" []          [] "foobar" - * - * Similarly after deletion, if a new chain of nodes having a single child - * is created (the chain must also not include nodes that represent keys), - * it must be compressed back into a single node. - * - */ - -#define RAX_NODE_MAX_SIZE ((1<<29)-1) -typedef struct raxNode { -    uint32_t iskey:1;     /* Does this node contain a key? */ -    uint32_t isnull:1;    /* Associated value is NULL (don't store it). */ -    uint32_t iscompr:1;   /* Node is compressed. */ -    uint32_t size:29;     /* Number of children, or compressed string len. */ -    /* Data layout is as follows: -     * -     * If node is not compressed we have 'size' bytes, one for each children -     * character, and 'size' raxNode pointers, point to each child node. -     * Note how the character is not stored in the children but in the -     * edge of the parents: -     * -     * [header strlen=0][abc][a-ptr][b-ptr][c-ptr](value-ptr?) -     * -     * if node is compressed (strlen != 0) the node has 1 children. -     * In that case the 'size' bytes of the string stored immediately at -     * the start of the data section, represent a sequence of successive -     * nodes linked one after the other, for which only the last one in -     * the sequence is actually represented as a node, and pointed to by -     * the current compressed node. -     * -     * [header strlen=3][xyz][z-ptr](value-ptr?) -     * -     * Both compressed and not compressed nodes can represent a key -     * with associated data in the radix tree at any level (not just terminal -     * nodes). -     * -     * If the node has an associated key (iskey=1) and is not NULL -     * (isnull=0), then after the raxNode pointers poiting to the -     * childen, an additional value pointer is present (as you can see -     * in the representation above as "value-ptr" field). -     */ -    unsigned char data[]; -} raxNode; - -typedef struct rax { -    raxNode *head; -    uint64_t numele; -    uint64_t numnodes; -} rax; - -/* Stack data structure used by raxLowWalk() in order to, optionally, return - * a list of parent nodes to the caller. The nodes do not have a "parent" - * field for space concerns, so we use the auxiliary stack when needed. */ -#define RAX_STACK_STATIC_ITEMS 32 -typedef struct raxStack { -    void **stack; /* Points to static_items or an heap allocated array. */ -    size_t items, maxitems; /* Number of items contained and total space. */ -    /* Up to RAXSTACK_STACK_ITEMS items we avoid to allocate on the heap -     * and use this static array of pointers instead. */ -    void *static_items[RAX_STACK_STATIC_ITEMS]; -    int oom; /* True if pushing into this stack failed for OOM at some point. */ -} raxStack; - -/* Radix tree iterator state is encapsulated into this data structure. */ -#define RAX_ITER_STATIC_LEN 128 -#define RAX_ITER_JUST_SEEKED (1<<0) /* Iterator was just seeked. Return current -                                       element for the first iteration and -                                       clear the flag. */ -#define RAX_ITER_EOF (1<<1)    /* End of iteration reached. */ -#define RAX_ITER_SAFE (1<<2)   /* Safe iterator, allows operations while -                                  iterating. But it is slower. */ -typedef struct raxIterator { -    int flags; -    rax *rt;                /* Radix tree we are iterating. */ -    unsigned char *key;     /* The current string. */ -    void *data;             /* Data associated to this key. */ -    size_t key_len;         /* Current key length. */ -    size_t key_max;         /* Max key len the current key buffer can hold. */ -    unsigned char key_static_string[RAX_ITER_STATIC_LEN]; -    raxNode *node;          /* Current node. Only for unsafe iteration. */ -    raxStack stack;         /* Stack used for unsafe iteration. */ -} raxIterator; - -/* A special pointer returned for not found items. */ -extern void *raxNotFound; - -/* Exported API. */ -rax *raxNew(void); -int raxInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old); -int raxTryInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old); -int raxRemove(rax *rax, unsigned char *s, size_t len, void **old); -void *raxFind(rax *rax, unsigned char *s, size_t len); -void raxFree(rax *rax); -void raxFreeWithCallback(rax *rax, void (*free_callback)(void*)); -void raxStart(raxIterator *it, rax *rt); -int raxSeek(raxIterator *it, const char *op, unsigned char *ele, size_t len); -int raxNext(raxIterator *it); -int raxPrev(raxIterator *it); -int raxRandomWalk(raxIterator *it, size_t steps); -int raxCompare(raxIterator *iter, const char *op, unsigned char *key, size_t key_len); -void raxStop(raxIterator *it); -int raxEOF(raxIterator *it); -void raxShow(rax *rax); -uint64_t raxSize(rax *rax); - -#endif @@ -33,8 +33,8 @@  # Pre-version are only available in github  %global upstream_ver 5.0.0 -%global upstream_pre RC2 -%global gh_commit    f7209749a632218e5a3fa3171f5711075573af8f +%global upstream_pre RC3 +%global gh_commit    48dfd42d729ce8325b20cb084203b129b2759fb8  %global gh_short     %(c=%{gh_commit}; echo ${c:0:7})  %global gh_owner     antirez  %global gh_project   redis @@ -71,10 +71,6 @@ Source8:           %{name}-limit-init  Source9:           macros.%{name}  Source10:          https://github.com/antirez/%{name}-doc/archive/%{doc_commit}/%{name}-doc-%{short_doc_commit}.tar.gz -# See https://github.com/antirez/redis/issues/5022 -Source11:          https://raw.githubusercontent.com/antirez/redis/unstable/src/rax.c -Source12:          https://raw.githubusercontent.com/antirez/redis/unstable/src/rax.h -  # To refresh patches:  # tar xf redis-xxx.tar.gz && cd redis-xxx && git init && git add . && git commit -m "%%{version} baseline"  # git am %%{patches} @@ -192,8 +188,6 @@ rm -frv deps/jemalloc  %patch0001 -p1  %patch0002 -p1 -cp %{SOURCE11} %{SOURCE12} src/ -  # Use system jemalloc library  sed -i -e '/cd jemalloc && /d' deps/Makefile  sed -i -e 's|../deps/jemalloc/lib/libjemalloc.a|-ljemalloc -ldl|g' src/Makefile @@ -410,6 +404,9 @@ fi  %changelog +* Thu Jun 14 2018 Remi Collet <remi@remirepo.net> - 5.0.0~RC3-1 +- Redis 5.0 RC3 (4.9.103) - Released Wed Jun 14 9:51:44 CEST 2018 +  * Thu Jun 14 2018 Remi Collet <remi@remirepo.net> - 5.0.0~RC2-1  - Redis 5.0 RC2 (4.9.102) - Released Wed Jun 13 12:49:13 CEST 2018  - Upgrade urgency CRITICAL: This release fixes important security issues.  | 
