diff options
author | Remi Collet <remi@remirepo.net> | 2018-06-14 10:48:18 +0200 |
---|---|---|
committer | Remi Collet <remi@remirepo.net> | 2018-06-14 10:48:18 +0200 |
commit | f0b29b8534eee02bfc91164460a304fc6a4d4586 (patch) | |
tree | 1720af62d5ec5df6dcb9323a68e6d10ba543eb05 /rax.c | |
parent | 661d837b26fc7cab302ee2b6dfb54b7681558bf1 (diff) |
Redis 5.0 RC3 (4.9.103) - Released Wed Jun 14 9:51:44 CEST 2018
Diffstat (limited to 'rax.c')
-rw-r--r-- | rax.c | 1801 |
1 files changed, 0 insertions, 1801 deletions
@@ -1,1801 +0,0 @@ -/* Rax -- A radix tree implementation. - * - * Copyright (c) 2017, Salvatore Sanfilippo <antirez at gmail dot com> - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions are met: - * - * * Redistributions of source code must retain the above copyright notice, - * this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * * Neither the name of Redis nor the names of its contributors may be used - * to endorse or promote products derived from this software without - * specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE - * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#include <stdlib.h> -#include <string.h> -#include <assert.h> -#include <stdio.h> -#include <errno.h> -#include <math.h> -#include "rax.h" - -#ifndef RAX_MALLOC_INCLUDE -#define RAX_MALLOC_INCLUDE "rax_malloc.h" -#endif - -#include RAX_MALLOC_INCLUDE - -/* This is a special pointer that is guaranteed to never have the same value - * of a radix tree node. It's used in order to report "not found" error without - * requiring the function to have multiple return values. */ -void *raxNotFound = (void*)"rax-not-found-pointer"; - -/* -------------------------------- Debugging ------------------------------ */ - -void raxDebugShowNode(const char *msg, raxNode *n); - -/* Turn debugging messages on/off. */ -#if 0 -#define debugf(...) \ - do { \ - printf("%s:%s:%d:\t", __FILE__, __FUNCTION__, __LINE__); \ - printf(__VA_ARGS__); \ - fflush(stdout); \ - } while (0); - -#define debugnode(msg,n) raxDebugShowNode(msg,n) -#else -#define debugf(...) -#define debugnode(msg,n) -#endif - -/* ------------------------- raxStack functions -------------------------- - * The raxStack is a simple stack of pointers that is capable of switching - * from using a stack-allocated array to dynamic heap once a given number of - * items are reached. It is used in order to retain the list of parent nodes - * while walking the radix tree in order to implement certain operations that - * need to navigate the tree upward. - * ------------------------------------------------------------------------- */ - -/* Initialize the stack. */ -static inline void raxStackInit(raxStack *ts) { - ts->stack = ts->static_items; - ts->items = 0; - ts->maxitems = RAX_STACK_STATIC_ITEMS; - ts->oom = 0; -} - -/* Push an item into the stack, returns 1 on success, 0 on out of memory. */ -static inline int raxStackPush(raxStack *ts, void *ptr) { - if (ts->items == ts->maxitems) { - if (ts->stack == ts->static_items) { - ts->stack = rax_malloc(sizeof(void*)*ts->maxitems*2); - if (ts->stack == NULL) { - ts->stack = ts->static_items; - ts->oom = 1; - errno = ENOMEM; - return 0; - } - memcpy(ts->stack,ts->static_items,sizeof(void*)*ts->maxitems); - } else { - void **newalloc = rax_realloc(ts->stack,sizeof(void*)*ts->maxitems*2); - if (newalloc == NULL) { - ts->oom = 1; - errno = ENOMEM; - return 0; - } - ts->stack = newalloc; - } - ts->maxitems *= 2; - } - ts->stack[ts->items] = ptr; - ts->items++; - return 1; -} - -/* Pop an item from the stack, the function returns NULL if there are no - * items to pop. */ -static inline void *raxStackPop(raxStack *ts) { - if (ts->items == 0) return NULL; - ts->items--; - return ts->stack[ts->items]; -} - -/* Return the stack item at the top of the stack without actually consuming - * it. */ -static inline void *raxStackPeek(raxStack *ts) { - if (ts->items == 0) return NULL; - return ts->stack[ts->items-1]; -} - -/* Free the stack in case we used heap allocation. */ -static inline void raxStackFree(raxStack *ts) { - if (ts->stack != ts->static_items) rax_free(ts->stack); -} - -/* ---------------------------------------------------------------------------- - * Radix tree implementation - * --------------------------------------------------------------------------*/ - -/* Allocate a new non compressed node with the specified number of children. - * If datafiled is true, the allocation is made large enough to hold the - * associated data pointer. - * Returns the new node pointer. On out of memory NULL is returned. */ -raxNode *raxNewNode(size_t children, int datafield) { - size_t nodesize = sizeof(raxNode)+children+ - sizeof(raxNode*)*children; - if (datafield) nodesize += sizeof(void*); - raxNode *node = rax_malloc(nodesize); - if (node == NULL) return NULL; - node->iskey = 0; - node->isnull = 0; - node->iscompr = 0; - node->size = children; - return node; -} - -/* Allocate a new rax and return its pointer. On out of memory the function - * returns NULL. */ -rax *raxNew(void) { - rax *rax = rax_malloc(sizeof(*rax)); - if (rax == NULL) return NULL; - rax->numele = 0; - rax->numnodes = 1; - rax->head = raxNewNode(0,0); - if (rax->head == NULL) { - rax_free(rax); - return NULL; - } else { - return rax; - } -} - -/* Return the current total size of the node. */ -#define raxNodeCurrentLength(n) ( \ - sizeof(raxNode)+(n)->size+ \ - ((n)->iscompr ? sizeof(raxNode*) : sizeof(raxNode*)*(n)->size)+ \ - (((n)->iskey && !(n)->isnull)*sizeof(void*)) \ -) - -/* realloc the node to make room for auxiliary data in order - * to store an item in that node. On out of memory NULL is returned. */ -raxNode *raxReallocForData(raxNode *n, void *data) { - if (data == NULL) return n; /* No reallocation needed, setting isnull=1 */ - size_t curlen = raxNodeCurrentLength(n); - return rax_realloc(n,curlen+sizeof(void*)); -} - -/* Set the node auxiliary data to the specified pointer. */ -void raxSetData(raxNode *n, void *data) { - n->iskey = 1; - if (data != NULL) { - n->isnull = 0; - void **ndata = (void**) - ((char*)n+raxNodeCurrentLength(n)-sizeof(void*)); - memcpy(ndata,&data,sizeof(data)); - } else { - n->isnull = 1; - } -} - -/* Get the node auxiliary data. */ -void *raxGetData(raxNode *n) { - if (n->isnull) return NULL; - void **ndata =(void**)((char*)n+raxNodeCurrentLength(n)-sizeof(void*)); - void *data; - memcpy(&data,ndata,sizeof(data)); - return data; -} - -/* Add a new child to the node 'n' representing the character 'c' and return - * its new pointer, as well as the child pointer by reference. Additionally - * '***parentlink' is populated with the raxNode pointer-to-pointer of where - * the new child was stored, which is useful for the caller to replace the - * child pointer if it gets reallocated. - * - * On success the new parent node pointer is returned (it may change because - * of the realloc, so the caller should discard 'n' and use the new value). - * On out of memory NULL is returned, and the old node is still valid. */ -raxNode *raxAddChild(raxNode *n, unsigned char c, raxNode **childptr, raxNode ***parentlink) { - assert(n->iscompr == 0); - - size_t curlen = sizeof(raxNode)+ - n->size+ - sizeof(raxNode*)*n->size; - size_t newlen; - - /* Alloc the new child we will link to 'n'. */ - raxNode *child = raxNewNode(0,0); - if (child == NULL) return NULL; - - /* Make space in the original node. */ - if (n->iskey) curlen += sizeof(void*); - newlen = curlen+sizeof(raxNode*)+1; /* Add 1 char and 1 pointer. */ - raxNode *newn = rax_realloc(n,newlen); - if (newn == NULL) { - rax_free(child); - return NULL; - } - n = newn; - - /* After the reallocation, we have 5/9 (depending on the system - * pointer size) bytes at the end, that is, the additional char - * in the 'data' section, plus one pointer to the new child: - * - * [numc][abx][ap][bp][xp]|auxp|..... - * - * Let's find where to insert the new child in order to make sure - * it is inserted in-place lexicographically. */ - int pos; - for (pos = 0; pos < n->size; pos++) { - if (n->data[pos] > c) break; - } - - /* Now, if present, move auxiliary data pointer at the end - * so that we can mess with the other data without overwriting it. - * We will obtain something like that: - * - * [numc][abx][ap][bp][xp].....|auxp| */ - unsigned char *src; - if (n->iskey && !n->isnull) { - src = n->data+n->size+sizeof(raxNode*)*n->size; - memmove(src+1+sizeof(raxNode*),src,sizeof(void*)); - } - - /* Now imagine we are adding a node with edge 'c'. The insertion - * point is between 'b' and 'x', so the 'pos' variable value is - * To start, move all the child pointers after the insertion point - * of 1+sizeof(pointer) bytes on the right, to obtain: - * - * [numc][abx][ap][bp].....[xp]|auxp| */ - src = n->data+n->size+sizeof(raxNode*)*pos; - memmove(src+1+sizeof(raxNode*),src,sizeof(raxNode*)*(n->size-pos)); - - /* Now make the space for the additional char in the data section, - * but also move the pointers before the insertion point in the right - * by 1 byte, in order to obtain the following: - * - * [numc][ab.x][ap][bp]....[xp]|auxp| */ - src = n->data+pos; - memmove(src+1,src,n->size-pos+sizeof(raxNode*)*pos); - - /* We can now set the character and its child node pointer to get: - * - * [numc][abcx][ap][bp][cp]....|auxp| - * [numc][abcx][ap][bp][cp][xp]|auxp| */ - n->data[pos] = c; - n->size++; - raxNode **childfield = (raxNode**)(n->data+n->size+sizeof(raxNode*)*pos); - memcpy(childfield,&child,sizeof(child)); - *childptr = child; - *parentlink = childfield; - return n; -} - -/* Return the pointer to the last child pointer in a node. For the compressed - * nodes this is the only child pointer. */ -#define raxNodeLastChildPtr(n) ((raxNode**) ( \ - ((char*)(n)) + \ - raxNodeCurrentLength(n) - \ - sizeof(raxNode*) - \ - (((n)->iskey && !(n)->isnull) ? sizeof(void*) : 0) \ -)) - -/* Return the pointer to the first child pointer. */ -#define raxNodeFirstChildPtr(n) ((raxNode**)((n)->data+(n)->size)) - -/* Turn the node 'n', that must be a node without any children, into a - * compressed node representing a set of nodes linked one after the other - * and having exactly one child each. The node can be a key or not: this - * property and the associated value if any will be preserved. - * - * The function also returns a child node, since the last node of the - * compressed chain cannot be part of the chain: it has zero children while - * we can only compress inner nodes with exactly one child each. */ -raxNode *raxCompressNode(raxNode *n, unsigned char *s, size_t len, raxNode **child) { - assert(n->size == 0 && n->iscompr == 0); - void *data = NULL; /* Initialized only to avoid warnings. */ - size_t newsize; - - debugf("Compress node: %.*s\n", (int)len,s); - - /* Allocate the child to link to this node. */ - *child = raxNewNode(0,0); - if (*child == NULL) return NULL; - - /* Make space in the parent node. */ - newsize = sizeof(raxNode)+len+sizeof(raxNode*); - if (n->iskey) { - data = raxGetData(n); /* To restore it later. */ - if (!n->isnull) newsize += sizeof(void*); - } - raxNode *newn = rax_realloc(n,newsize); - if (newn == NULL) { - rax_free(*child); - return NULL; - } - n = newn; - - n->iscompr = 1; - n->size = len; - memcpy(n->data,s,len); - if (n->iskey) raxSetData(n,data); - raxNode **childfield = raxNodeLastChildPtr(n); - memcpy(childfield,child,sizeof(*child)); - return n; -} - -/* Low level function that walks the tree looking for the string - * 's' of 'len' bytes. The function returns the number of characters - * of the key that was possible to process: if the returned integer - * is the same as 'len', then it means that the node corresponding to the - * string was found (however it may not be a key in case the node->iskey is - * zero or if simply we stopped in the middle of a compressed node, so that - * 'splitpos' is non zero). - * - * Otherwise if the returned integer is not the same as 'len', there was an - * early stop during the tree walk because of a character mismatch. - * - * The node where the search ended (because the full string was processed - * or because there was an early stop) is returned by reference as - * '*stopnode' if the passed pointer is not NULL. This node link in the - * parent's node is returned as '*plink' if not NULL. Finally, if the - * search stopped in a compressed node, '*splitpos' returns the index - * inside the compressed node where the search ended. This is useful to - * know where to split the node for insertion. - * - * Note that when we stop in the middle of a compressed node with - * a perfect match, this function will return a length equal to the - * 'len' argument (all the key matched), and will return a *splitpos which is - * always positive (that will represent the index of the character immediately - * *after* the last match in the current compressed node). - * - * When instead we stop at a compressed node and *splitpos is zero, it - * means that the current node represents the key (that is, none of the - * compressed node characters are needed to represent the key, just all - * its parents nodes). */ -static inline size_t raxLowWalk(rax *rax, unsigned char *s, size_t len, raxNode **stopnode, raxNode ***plink, int *splitpos, raxStack *ts) { - raxNode *h = rax->head; - raxNode **parentlink = &rax->head; - - size_t i = 0; /* Position in the string. */ - size_t j = 0; /* Position in the node children (or bytes if compressed).*/ - while(h->size && i < len) { - debugnode("Lookup current node",h); - unsigned char *v = h->data; - - if (h->iscompr) { - for (j = 0; j < h->size && i < len; j++, i++) { - if (v[j] != s[i]) break; - } - if (j != h->size) break; - } else { - /* Even when h->size is large, linear scan provides good - * performances compared to other approaches that are in theory - * more sounding, like performing a binary search. */ - for (j = 0; j < h->size; j++) { - if (v[j] == s[i]) break; - } - if (j == h->size) break; - i++; - } - - if (ts) raxStackPush(ts,h); /* Save stack of parent nodes. */ - raxNode **children = raxNodeFirstChildPtr(h); - if (h->iscompr) j = 0; /* Compressed node only child is at index 0. */ - memcpy(&h,children+j,sizeof(h)); - parentlink = children+j; - j = 0; /* If the new node is compressed and we do not - iterate again (since i == l) set the split - position to 0 to signal this node represents - the searched key. */ - } - debugnode("Lookup stop node is",h); - if (stopnode) *stopnode = h; - if (plink) *plink = parentlink; - if (splitpos && h->iscompr) *splitpos = j; - return i; -} - -/* Insert the element 's' of size 'len', setting as auxiliary data - * the pointer 'data'. If the element is already present, the associated - * data is updated (only if 'overwrite' is set to 1), and 0 is returned, - * otherwise the element is inserted and 1 is returned. On out of memory the - * function returns 0 as well but sets errno to ENOMEM, otherwise errno will - * be set to 0. - */ -int raxGenericInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old, int overwrite) { - size_t i; - int j = 0; /* Split position. If raxLowWalk() stops in a compressed - node, the index 'j' represents the char we stopped within the - compressed node, that is, the position where to split the - node for insertion. */ - raxNode *h, **parentlink; - - debugf("### Insert %.*s with value %p\n", (int)len, s, data); - i = raxLowWalk(rax,s,len,&h,&parentlink,&j,NULL); - - /* If i == len we walked following the whole string. If we are not - * in the middle of a compressed node, the string is either already - * inserted or this middle node is currently not a key, but can represent - * our key. We have just to reallocate the node and make space for the - * data pointer. */ - if (i == len && (!h->iscompr || j == 0 /* not in the middle if j is 0 */)) { - debugf("### Insert: node representing key exists\n"); - /* Make space for the value pointer if needed. */ - if (!h->iskey || (h->isnull && overwrite)) { - h = raxReallocForData(h,data); - if (h) memcpy(parentlink,&h,sizeof(h)); - } - if (h == NULL) { - errno = ENOMEM; - return 0; - } - - /* Update the existing key if there is already one. */ - if (h->iskey) { - if (old) *old = raxGetData(h); - if (overwrite) raxSetData(h,data); - errno = 0; - return 0; /* Element already exists. */ - } - - /* Otherwise set the node as a key. Note that raxSetData() - * will set h->iskey. */ - raxSetData(h,data); - rax->numele++; - return 1; /* Element inserted. */ - } - - /* If the node we stopped at is a compressed node, we need to - * split it before to continue. - * - * Splitting a compressed node have a few possibile cases. - * Imagine that the node 'h' we are currently at is a compressed - * node contaning the string "ANNIBALE" (it means that it represents - * nodes A -> N -> N -> I -> B -> A -> L -> E with the only child - * pointer of this node pointing at the 'E' node, because remember that - * we have characters at the edges of the graph, not inside the nodes - * themselves. - * - * In order to show a real case imagine our node to also point to - * another compressed node, that finally points at the node without - * children, representing 'O': - * - * "ANNIBALE" -> "SCO" -> [] - * - * When inserting we may face the following cases. Note that all the cases - * require the insertion of a non compressed node with exactly two - * children, except for the last case which just requires splitting a - * compressed node. - * - * 1) Inserting "ANNIENTARE" - * - * |B| -> "ALE" -> "SCO" -> [] - * "ANNI" -> |-| - * |E| -> (... continue algo ...) "NTARE" -> [] - * - * 2) Inserting "ANNIBALI" - * - * |E| -> "SCO" -> [] - * "ANNIBAL" -> |-| - * |I| -> (... continue algo ...) [] - * - * 3) Inserting "AGO" (Like case 1, but set iscompr = 0 into original node) - * - * |N| -> "NIBALE" -> "SCO" -> [] - * |A| -> |-| - * |G| -> (... continue algo ...) |O| -> [] - * - * 4) Inserting "CIAO" - * - * |A| -> "NNIBALE" -> "SCO" -> [] - * |-| - * |C| -> (... continue algo ...) "IAO" -> [] - * - * 5) Inserting "ANNI" - * - * "ANNI" -> "BALE" -> "SCO" -> [] - * - * The final algorithm for insertion covering all the above cases is as - * follows. - * - * ============================= ALGO 1 ============================= - * - * For the above cases 1 to 4, that is, all cases where we stopped in - * the middle of a compressed node for a character mismatch, do: - * - * Let $SPLITPOS be the zero-based index at which, in the - * compressed node array of characters, we found the mismatching - * character. For example if the node contains "ANNIBALE" and we add - * "ANNIENTARE" the $SPLITPOS is 4, that is, the index at which the - * mismatching character is found. - * - * 1. Save the current compressed node $NEXT pointer (the pointer to the - * child element, that is always present in compressed nodes). - * - * 2. Create "split node" having as child the non common letter - * at the compressed node. The other non common letter (at the key) - * will be added later as we continue the normal insertion algorithm - * at step "6". - * - * 3a. IF $SPLITPOS == 0: - * Replace the old node with the split node, by copying the auxiliary - * data if any. Fix parent's reference. Free old node eventually - * (we still need its data for the next steps of the algorithm). - * - * 3b. IF $SPLITPOS != 0: - * Trim the compressed node (reallocating it as well) in order to - * contain $splitpos characters. Change chilid pointer in order to link - * to the split node. If new compressed node len is just 1, set - * iscompr to 0 (layout is the same). Fix parent's reference. - * - * 4a. IF the postfix len (the length of the remaining string of the - * original compressed node after the split character) is non zero, - * create a "postfix node". If the postfix node has just one character - * set iscompr to 0, otherwise iscompr to 1. Set the postfix node - * child pointer to $NEXT. - * - * 4b. IF the postfix len is zero, just use $NEXT as postfix pointer. - * - * 5. Set child[0] of split node to postfix node. - * - * 6. Set the split node as the current node, set current index at child[1] - * and continue insertion algorithm as usually. - * - * ============================= ALGO 2 ============================= - * - * For case 5, that is, if we stopped in the middle of a compressed - * node but no mismatch was found, do: - * - * Let $SPLITPOS be the zero-based index at which, in the - * compressed node array of characters, we stopped iterating because - * there were no more keys character to match. So in the example of - * the node "ANNIBALE", addig the string "ANNI", the $SPLITPOS is 4. - * - * 1. Save the current compressed node $NEXT pointer (the pointer to the - * child element, that is always present in compressed nodes). - * - * 2. Create a "postfix node" containing all the characters from $SPLITPOS - * to the end. Use $NEXT as the postfix node child pointer. - * If the postfix node length is 1, set iscompr to 0. - * Set the node as a key with the associated value of the new - * inserted key. - * - * 3. Trim the current node to contain the first $SPLITPOS characters. - * As usually if the new node length is just 1, set iscompr to 0. - * Take the iskey / associated value as it was in the orignal node. - * Fix the parent's reference. - * - * 4. Set the postfix node as the only child pointer of the trimmed - * node created at step 1. - */ - - /* ------------------------- ALGORITHM 1 --------------------------- */ - if (h->iscompr && i != len) { - debugf("ALGO 1: Stopped at compressed node %.*s (%p)\n", - h->size, h->data, (void*)h); - debugf("Still to insert: %.*s\n", (int)(len-i), s+i); - debugf("Splitting at %d: '%c'\n", j, ((char*)h->data)[j]); - debugf("Other (key) letter is '%c'\n", s[i]); - - /* 1: Save next pointer. */ - raxNode **childfield = raxNodeLastChildPtr(h); - raxNode *next; - memcpy(&next,childfield,sizeof(next)); - debugf("Next is %p\n", (void*)next); - debugf("iskey %d\n", h->iskey); - if (h->iskey) { - debugf("key value is %p\n", raxGetData(h)); - } - - /* Set the length of the additional nodes we will need. */ - size_t trimmedlen = j; - size_t postfixlen = h->size - j - 1; - int split_node_is_key = !trimmedlen && h->iskey && !h->isnull; - size_t nodesize; - - /* 2: Create the split node. Also allocate the other nodes we'll need - * ASAP, so that it will be simpler to handle OOM. */ - raxNode *splitnode = raxNewNode(1, split_node_is_key); - raxNode *trimmed = NULL; - raxNode *postfix = NULL; - - if (trimmedlen) { - nodesize = sizeof(raxNode)+trimmedlen+sizeof(raxNode*); - if (h->iskey && !h->isnull) nodesize += sizeof(void*); - trimmed = rax_malloc(nodesize); - } - - if (postfixlen) { - nodesize = sizeof(raxNode)+postfixlen+ - sizeof(raxNode*); - postfix = rax_malloc(nodesize); - } - - /* OOM? Abort now that the tree is untouched. */ - if (splitnode == NULL || - (trimmedlen && trimmed == NULL) || - (postfixlen && postfix == NULL)) - { - rax_free(splitnode); - rax_free(trimmed); - rax_free(postfix); - errno = ENOMEM; - return 0; - } - splitnode->data[0] = h->data[j]; - - if (j == 0) { - /* 3a: Replace the old node with the split node. */ - if (h->iskey) { - void *ndata = raxGetData(h); - raxSetData(splitnode,ndata); - } - memcpy(parentlink,&splitnode,sizeof(splitnode)); - } else { - /* 3b: Trim the compressed node. */ - trimmed->size = j; - memcpy(trimmed->data,h->data,j); - trimmed->iscompr = j > 1 ? 1 : 0; - trimmed->iskey = h->iskey; - trimmed->isnull = h->isnull; - if (h->iskey && !h->isnull) { - void *ndata = raxGetData(h); - raxSetData(trimmed,ndata); - } - raxNode **cp = raxNodeLastChildPtr(trimmed); - memcpy(cp,&splitnode,sizeof(splitnode)); - memcpy(parentlink,&trimmed,sizeof(trimmed)); - parentlink = cp; /* Set parentlink to splitnode parent. */ - rax->numnodes++; - } - - /* 4: Create the postfix node: what remains of the original - * compressed node after the split. */ - if (postfixlen) { - /* 4a: create a postfix node. */ - postfix->iskey = 0; - postfix->isnull = 0; - postfix->size = postfixlen; - postfix->iscompr = postfixlen > 1; - memcpy(postfix->data,h->data+j+1,postfixlen); - raxNode **cp = raxNodeLastChildPtr(postfix); - memcpy(cp,&next,sizeof(next)); - rax->numnodes++; - } else { - /* 4b: just use next as postfix node. */ - postfix = next; - } - - /* 5: Set splitnode first child as the postfix node. */ - raxNode **splitchild = raxNodeLastChildPtr(splitnode); - memcpy(splitchild,&postfix,sizeof(postfix)); - - /* 6. Continue insertion: this will cause the splitnode to - * get a new child (the non common character at the currently - * inserted key). */ - rax_free(h); - h = splitnode; - } else if (h->iscompr && i == len) { - /* ------------------------- ALGORITHM 2 --------------------------- */ - debugf("ALGO 2: Stopped at compressed node %.*s (%p) j = %d\n", - h->size, h->data, (void*)h, j); - - /* Allocate postfix & trimmed nodes ASAP to fail for OOM gracefully. */ - size_t postfixlen = h->size - j; - size_t nodesize = sizeof(raxNode)+postfixlen+sizeof(raxNode*); - if (data != NULL) nodesize += sizeof(void*); - raxNode *postfix = rax_malloc(nodesize); - - nodesize = sizeof(raxNode)+j+sizeof(raxNode*); - if (h->iskey && !h->isnull) nodesize += sizeof(void*); - raxNode *trimmed = rax_malloc(nodesize); - - if (postfix == NULL || trimmed == NULL) { - rax_free(postfix); - rax_free(trimmed); - errno = ENOMEM; - return 0; - } - - /* 1: Save next pointer. */ - raxNode **childfield = raxNodeLastChildPtr(h); - raxNode *next; - memcpy(&next,childfield,sizeof(next)); - - /* 2: Create the postfix node. */ - postfix->size = postfixlen; - postfix->iscompr = postfixlen > 1; - postfix->iskey = 1; - postfix->isnull = 0; - memcpy(postfix->data,h->data+j,postfixlen); - raxSetData(postfix,data); - raxNode **cp = raxNodeLastChildPtr(postfix); - memcpy(cp,&next,sizeof(next)); - rax->numnodes++; - - /* 3: Trim the compressed node. */ - trimmed->size = j; - trimmed->iscompr = j > 1; - trimmed->iskey = 0; - trimmed->isnull = 0; - memcpy(trimmed->data,h->data,j); - memcpy(parentlink,&trimmed,sizeof(trimmed)); - if (h->iskey) { - void *aux = raxGetData(h); - raxSetData(trimmed,aux); - } - - /* Fix the trimmed node child pointer to point to - * the postfix node. */ - cp = raxNodeLastChildPtr(trimmed); - memcpy(cp,&postfix,sizeof(postfix)); - - /* Finish! We don't need to contine with the insertion - * algorithm for ALGO 2. The key is already inserted. */ - rax->numele++; - rax_free(h); - return 1; /* Key inserted. */ - } - - /* We walked the radix tree as far as we could, but still there are left - * chars in our string. We need to insert the missing nodes. */ - while(i < len) { - raxNode *child; - - /* If this node is going to have a single child, and there - * are other characters, so that that would result in a chain - * of single-childed nodes, turn it into a compressed node. */ - if (h->size == 0 && len-i > 1) { - debugf("Inserting compressed node\n"); - size_t comprsize = len-i; - if (comprsize > RAX_NODE_MAX_SIZE) - comprsize = RAX_NODE_MAX_SIZE; - raxNode *newh = raxCompressNode(h,s+i,comprsize,&child); - if (newh == NULL) goto oom; - h = newh; - memcpy(parentlink,&h,sizeof(h)); - parentlink = raxNodeLastChildPtr(h); - i += comprsize; - } else { - debugf("Inserting normal node\n"); - raxNode **new_parentlink; - raxNode *newh = raxAddChild(h,s[i],&child,&new_parentlink); - if (newh == NULL) goto oom; - h = newh; - memcpy(parentlink,&h,sizeof(h)); - parentlink = new_parentlink; - i++; - } - rax->numnodes++; - h = child; - } - raxNode *newh = raxReallocForData(h,data); - if (newh == NULL) goto oom; - h = newh; - if (!h->iskey) rax->numele++; - raxSetData(h,data); - memcpy(parentlink,&h,sizeof(h)); - return 1; /* Element inserted. */ - -oom: - /* This code path handles out of memory after part of the sub-tree was - * already modified. Set the node as a key, and then remove it. However we - * do that only if the node is a terminal node, otherwise if the OOM - * happened reallocating a node in the middle, we don't need to free - * anything. */ - if (h->size == 0) { - h->isnull = 1; - h->iskey = 1; - rax->numele++; /* Compensate the next remove. */ - assert(raxRemove(rax,s,i,NULL) != 0); - } - errno = ENOMEM; - return 0; -} - -/* Overwriting insert. Just a wrapper for raxGenericInsert() that will - * update the element if there is already one for the same key. */ -int raxInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old) { - return raxGenericInsert(rax,s,len,data,old,1); -} - -/* Non overwriting insert function: this if an element with the same key - * exists, the value is not updated and the function returns 0. - * This is a just a wrapper for raxGenericInsert(). */ -int raxTryInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old) { - return raxGenericInsert(rax,s,len,data,old,0); -} - -/* Find a key in the rax, returns raxNotFound special void pointer value - * if the item was not found, otherwise the value associated with the - * item is returned. */ -void *raxFind(rax *rax, unsigned char *s, size_t len) { - raxNode *h; - - debugf("### Lookup: %.*s\n", (int)len, s); - int splitpos = 0; - size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,NULL); - if (i != len || (h->iscompr && splitpos != 0) || !h->iskey) - return raxNotFound; - return raxGetData(h); -} - -/* Return the memory address where the 'parent' node stores the specified - * 'child' pointer, so that the caller can update the pointer with another - * one if needed. The function assumes it will find a match, otherwise the - * operation is an undefined behavior (it will continue scanning the - * memory without any bound checking). */ -raxNode **raxFindParentLink(raxNode *parent, raxNode *child) { - raxNode **cp = raxNodeFirstChildPtr(parent); - raxNode *c; - while(1) { - memcpy(&c,cp,sizeof(c)); - if (c == child) break; - cp++; - } - return cp; -} - -/* Low level child removal from node. The new node pointer (after the child - * removal) is returned. Note that this function does not fix the pointer - * of the parent node in its parent, so this task is up to the caller. - * The function never fails for out of memory. */ -raxNode *raxRemoveChild(raxNode *parent, raxNode *child) { - debugnode("raxRemoveChild before", parent); - /* If parent is a compressed node (having a single child, as for definition - * of the data structure), the removal of the child consists into turning - * it into a normal node without children. */ - if (parent->iscompr) { - void *data = NULL; - if (parent->iskey) data = raxGetData(parent); - parent->isnull = 0; - parent->iscompr = 0; - parent->size = 0; - if (parent->iskey) raxSetData(parent,data); - debugnode("raxRemoveChild after", parent); - return parent; - } - - /* Otherwise we need to scan for the children pointer and memmove() - * accordingly. - * - * 1. To start we seek the first element in both the children - * pointers and edge bytes in the node. */ - raxNode **cp = raxNodeFirstChildPtr(parent); - raxNode **c = cp; - unsigned char *e = parent->data; - - /* 2. Search the child pointer to remove inside the array of children - * pointers. */ - while(1) { - raxNode *aux; - memcpy(&aux,c,sizeof(aux)); - if (aux == child) break; - c++; - e++; - } - - /* 3. Remove the edge and the pointer by memmoving the remaining children - * pointer and edge bytes one position before. */ - int taillen = parent->size - (e - parent->data) - 1; - debugf("raxRemoveChild tail len: %d\n", taillen); - memmove(e,e+1,taillen); - - /* Since we have one data byte less, also child pointers start one byte - * before now. */ - memmove(((char*)cp)-1,cp,(parent->size-taillen-1)*sizeof(raxNode**)); - - /* Move the remaining "tail" pointer at the right position as well. */ - size_t valuelen = (parent->iskey && !parent->isnull) ? sizeof(void*) : 0; - memmove(((char*)c)-1,c+1,taillen*sizeof(raxNode**)+valuelen); - - /* 4. Update size. */ - parent->size--; - - /* realloc the node according to the theoretical memory usage, to free - * data if we are over-allocating right now. */ - raxNode *newnode = rax_realloc(parent,raxNodeCurrentLength(parent)); - if (newnode) { - debugnode("raxRemoveChild after", newnode); - } - /* Note: if rax_realloc() fails we just return the old address, which - * is valid. */ - return newnode ? newnode : parent; -} - -/* Remove the specified item. Returns 1 if the item was found and - * deleted, 0 otherwise. */ -int raxRemove(rax *rax, unsigned char *s, size_t len, void **old) { - raxNode *h; - raxStack ts; - - debugf("### Delete: %.*s\n", (int)len, s); - raxStackInit(&ts); - int splitpos = 0; - size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,&ts); - if (i != len || (h->iscompr && splitpos != 0) || !h->iskey) { - raxStackFree(&ts); - return 0; - } - if (old) *old = raxGetData(h); - h->iskey = 0; - rax->numele--; - - /* If this node has no children, the deletion needs to reclaim the - * no longer used nodes. This is an iterative process that needs to - * walk the three upward, deleting all the nodes with just one child - * that are not keys, until the head of the rax is reached or the first - * node with more than one child is found. */ - - int trycompress = 0; /* Will be set to 1 if we should try to optimize the - tree resulting from the deletion. */ - - if (h->size == 0) { - debugf("Key deleted in node without children. Cleanup needed.\n"); - raxNode *child = NULL; - while(h != rax->head) { - child = h; - debugf("Freeing child %p [%.*s] key:%d\n", (void*)child, - (int)child->size, (char*)child->data, child->iskey); - rax_free(child); - rax->numnodes--; - h = raxStackPop(&ts); - /* If this node has more then one child, or actually holds - * a key, stop here. */ - if (h->iskey || (!h->iscompr && h->size != 1)) break; - } - if (child) { - debugf("Unlinking child %p from parent %p\n", - (void*)child, (void*)h); - raxNode *new = raxRemoveChild(h,child); - if (new != h) { - raxNode *parent = raxStackPeek(&ts); - raxNode **parentlink; - if (parent == NULL) { - parentlink = &rax->head; - } else { - parentlink = raxFindParentLink(parent,h); - } - memcpy(parentlink,&new,sizeof(new)); - } - - /* If after the removal the node has just a single child - * and is not a key, we need to try to compress it. */ - if (new->size == 1 && new->iskey == 0) { - trycompress = 1; - h = new; - } - } - } else if (h->size == 1) { - /* If the node had just one child, after the removal of the key - * further compression with adjacent nodes is pontentially possible. */ - trycompress = 1; - } - - /* Don't try node compression if our nodes pointers stack is not - * complete because of OOM while executing raxLowWalk() */ - if (trycompress && ts.oom) trycompress = 0; - - /* Recompression: if trycompress is true, 'h' points to a radix tree node - * that changed in a way that could allow to compress nodes in this - * sub-branch. Compressed nodes represent chains of nodes that are not - * keys and have a single child, so there are two deletion events that - * may alter the tree so that further compression is needed: - * - * 1) A node with a single child was a key and now no longer is a key. - * 2) A node with two children now has just one child. - * - * We try to navigate upward till there are other nodes that can be - * compressed, when we reach the upper node which is not a key and has - * a single child, we scan the chain of children to collect the - * compressable part of the tree, and replace the current node with the - * new one, fixing the child pointer to reference the first non - * compressable node. - * - * Example of case "1". A tree stores the keys "FOO" = 1 and - * "FOOBAR" = 2: - * - * - * "FOO" -> "BAR" -> [] (2) - * (1) - * - * After the removal of "FOO" the tree can be compressed as: - * - * "FOOBAR" -> [] (2) - * - * - * Example of case "2". A tree stores the keys "FOOBAR" = 1 and - * "FOOTER" = 2: - * - * |B| -> "AR" -> [] (1) - * "FOO" -> |-| - * |T| -> "ER" -> [] (2) - * - * After the removal of "FOOTER" the resulting tree is: - * - * "FOO" -> |B| -> "AR" -> [] (1) - * - * That can be compressed into: - * - * "FOOBAR" -> [] (1) - */ - if (trycompress) { - debugf("After removing %.*s:\n", (int)len, s); - debugnode("Compression may be needed",h); - debugf("Seek start node\n"); - - /* Try to reach the upper node that is compressible. - * At the end of the loop 'h' will point to the first node we - * can try to compress and 'parent' to its parent. */ - raxNode *parent; - while(1) { - parent = raxStackPop(&ts); - if (!parent || parent->iskey || - (!parent->iscompr && parent->size != 1)) break; - h = parent; - debugnode("Going up to",h); - } - raxNode *start = h; /* Compression starting node. */ - - /* Scan chain of nodes we can compress. */ - size_t comprsize = h->size; - int nodes = 1; - while(h->size != 0) { - raxNode **cp = raxNodeLastChildPtr(h); - memcpy(&h,cp,sizeof(h)); - if (h->iskey || (!h->iscompr && h->size != 1)) break; - /* Stop here if going to the next node would result into - * a compressed node larger than h->size can hold. */ - if (comprsize + h->size > RAX_NODE_MAX_SIZE) break; - nodes++; - comprsize += h->size; - } - if (nodes > 1) { - /* If we can compress, create the new node and populate it. */ - size_t nodesize = - sizeof(raxNode)+comprsize+sizeof(raxNode*); - raxNode *new = rax_malloc(nodesize); - /* An out of memory here just means we cannot optimize this - * node, but the tree is left in a consistent state. */ - if (new == NULL) { - raxStackFree(&ts); - return 1; - } - new->iskey = 0; - new->isnull = 0; - new->iscompr = 1; - new->size = comprsize; - rax->numnodes++; - - /* Scan again, this time to populate the new node content and - * to fix the new node child pointer. At the same time we free - * all the nodes that we'll no longer use. */ - comprsize = 0; - h = start; - while(h->size != 0) { - memcpy(new->data+comprsize,h->data,h->size); - comprsize += h->size; - raxNode **cp = raxNodeLastChildPtr(h); - raxNode *tofree = h; - memcpy(&h,cp,sizeof(h)); - rax_free(tofree); rax->numnodes--; - if (h->iskey || (!h->iscompr && h->size != 1)) break; - } - debugnode("New node",new); - - /* Now 'h' points to the first node that we still need to use, - * so our new node child pointer will point to it. */ - raxNode **cp = raxNodeLastChildPtr(new); - memcpy(cp,&h,sizeof(h)); - - /* Fix parent link. */ - if (parent) { - raxNode **parentlink = raxFindParentLink(parent,start); - memcpy(parentlink,&new,sizeof(new)); - } else { - rax->head = new; - } - - debugf("Compressed %d nodes, %d total bytes\n", - nodes, (int)comprsize); - } - } - raxStackFree(&ts); - return 1; -} - -/* This is the core of raxFree(): performs a depth-first scan of the - * tree and releases all the nodes found. */ -void raxRecursiveFree(rax *rax, raxNode *n, void (*free_callback)(void*)) { - debugnode("free traversing",n); - int numchildren = n->iscompr ? 1 : n->size; - raxNode **cp = raxNodeLastChildPtr(n); - while(numchildren--) { - raxNode *child; - memcpy(&child,cp,sizeof(child)); - raxRecursiveFree(rax,child,free_callback); - cp--; - } - debugnode("free depth-first",n); - if (free_callback && n->iskey && !n->isnull) - free_callback(raxGetData(n)); - rax_free(n); - rax->numnodes--; -} - -/* Free a whole radix tree, calling the specified callback in order to - * free the auxiliary data. */ -void raxFreeWithCallback(rax *rax, void (*free_callback)(void*)) { - raxRecursiveFree(rax,rax->head,free_callback); - assert(rax->numnodes == 0); - rax_free(rax); -} - -/* Free a whole radix tree. */ -void raxFree(rax *rax) { - raxFreeWithCallback(rax,NULL); -} - -/* ------------------------------- Iterator --------------------------------- */ - -/* Initialize a Rax iterator. This call should be performed a single time - * to initialize the iterator, and must be followed by a raxSeek() call, - * otherwise the raxPrev()/raxNext() functions will just return EOF. */ -void raxStart(raxIterator *it, rax *rt) { - it->flags = RAX_ITER_EOF; /* No crash if the iterator is not seeked. */ - it->rt = rt; - it->key_len = 0; - it->key = it->key_static_string; - it->key_max = RAX_ITER_STATIC_LEN; - it->data = NULL; - raxStackInit(&it->stack); -} - -/* Append characters at the current key string of the iterator 'it'. This - * is a low level function used to implement the iterator, not callable by - * the user. Returns 0 on out of memory, otherwise 1 is returned. */ -int raxIteratorAddChars(raxIterator *it, unsigned char *s, size_t len) { - if (it->key_max < it->key_len+len) { - unsigned char *old = (it->key == it->key_static_string) ? NULL : - it->key; - size_t new_max = (it->key_len+len)*2; - it->key = rax_realloc(old,new_max); - if (it->key == NULL) { - it->key = (!old) ? it->key_static_string : old; - errno = ENOMEM; - return 0; - } - if (old == NULL) memcpy(it->key,it->key_static_string,it->key_len); - it->key_max = new_max; - } - /* Use memmove since there could be an overlap between 's' and - * it->key when we use the current key in order to re-seek. */ - memmove(it->key+it->key_len,s,len); - it->key_len += len; - return 1; -} - -/* Remove the specified number of chars from the right of the current - * iterator key. */ -void raxIteratorDelChars(raxIterator *it, size_t count) { - it->key_len -= count; -} - -/* Do an iteration step towards the next element. At the end of the step the - * iterator key will represent the (new) current key. If it is not possible - * to step in the specified direction since there are no longer elements, the - * iterator is flagged with RAX_ITER_EOF. - * - * If 'noup' is true the function starts directly scanning for the next - * lexicographically smaller children, and the current node is already assumed - * to be the parent of the last key node, so the first operation to go back to - * the parent will be skipped. This option is used by raxSeek() when - * implementing seeking a non existing element with the ">" or "<" options: - * the starting node is not a key in that particular case, so we start the scan - * from a node that does not represent the key set. - * - * The function returns 1 on success or 0 on out of memory. */ -int raxIteratorNextStep(raxIterator *it, int noup) { - if (it->flags & RAX_ITER_EOF) { - return 1; - } else if (it->flags & RAX_ITER_JUST_SEEKED) { - it->flags &= ~RAX_ITER_JUST_SEEKED; - return 1; - } - - /* Save key len, stack items and the node where we are currently - * so that on iterator EOF we can restore the current key and state. */ - size_t orig_key_len = it->key_len; - size_t orig_stack_items = it->stack.items; - raxNode *orig_node = it->node; - - while(1) { - int children = it->node->iscompr ? 1 : it->node->size; - if (!noup && children) { - debugf("GO DEEPER\n"); - /* Seek the lexicographically smaller key in this subtree, which - * is the first one found always going torwards the first child - * of every successive node. */ - if (!raxStackPush(&it->stack,it->node)) return 0; - raxNode **cp = raxNodeFirstChildPtr(it->node); - if (!raxIteratorAddChars(it,it->node->data, - it->node->iscompr ? it->node->size : 1)) return 0; - memcpy(&it->node,cp,sizeof(it->node)); - /* For "next" step, stop every time we find a key along the - * way, since the key is lexicograhically smaller compared to - * what follows in the sub-children. */ - if (it->node->iskey) { - it->data = raxGetData(it->node); - return 1; - } - } else { - /* If we finished exporing the previous sub-tree, switch to the - * new one: go upper until a node is found where there are - * children representing keys lexicographically greater than the - * current key. */ - while(1) { - int old_noup = noup; - - /* Already on head? Can't go up, iteration finished. */ - if (!noup && it->node == it->rt->head) { - it->flags |= RAX_ITER_EOF; - it->stack.items = orig_stack_items; - it->key_len = orig_key_len; - it->node = orig_node; - return 1; - } - /* If there are no children at the current node, try parent's - * next child. */ - unsigned char prevchild = it->key[it->key_len-1]; - if (!noup) { - it->node = raxStackPop(&it->stack); - } else { - noup = 0; - } - /* Adjust the current key to represent the node we are - * at. */ - int todel = it->node->iscompr ? it->node->size : 1; - raxIteratorDelChars(it,todel); - - /* Try visiting the next child if there was at least one - * additional child. */ - if (!it->node->iscompr && it->node->size > (old_noup ? 0 : 1)) { - raxNode **cp = raxNodeFirstChildPtr(it->node); - int i = 0; - while (i < it->node->size) { - debugf("SCAN NEXT %c\n", it->node->data[i]); - if (it->node->data[i] > prevchild) break; - i++; - cp++; - } - if (i != it->node->size) { - debugf("SCAN found a new node\n"); - raxIteratorAddChars(it,it->node->data+i,1); - if (!raxStackPush(&it->stack,it->node)) return 0; - memcpy(&it->node,cp,sizeof(it->node)); - if (it->node->iskey) { - it->data = raxGetData(it->node); - return 1; - } - break; - } - } - } - } - } -} - -/* Seek the grestest key in the subtree at the current node. Return 0 on - * out of memory, otherwise 1. This is an helper function for different - * iteration functions below. */ -int raxSeekGreatest(raxIterator *it) { - while(it->node->size) { - if (it->node->iscompr) { - if (!raxIteratorAddChars(it,it->node->data, - it->node->size)) return 0; - } else { - if (!raxIteratorAddChars(it,it->node->data+it->node->size-1,1)) - return 0; - } - raxNode **cp = raxNodeLastChildPtr(it->node); - if (!raxStackPush(&it->stack,it->node)) return 0; - memcpy(&it->node,cp,sizeof(it->node)); - } - return 1; -} - -/* Like raxIteratorNextStep() but implements an iteration step moving - * to the lexicographically previous element. The 'noup' option has a similar - * effect to the one of raxIteratorPrevSte(). */ -int raxIteratorPrevStep(raxIterator *it, int noup) { - if (it->flags & RAX_ITER_EOF) { - return 1; - } else if (it->flags & RAX_ITER_JUST_SEEKED) { - it->flags &= ~RAX_ITER_JUST_SEEKED; - return 1; - } - - /* Save key len, stack items and the node where we are currently - * so that on iterator EOF we can restore the current key and state. */ - size_t orig_key_len = it->key_len; - size_t orig_stack_items = it->stack.items; - raxNode *orig_node = it->node; - - while(1) { - int old_noup = noup; - - /* Already on head? Can't go up, iteration finished. */ - if (!noup && it->node == it->rt->head) { - it->flags |= RAX_ITER_EOF; - it->stack.items = orig_stack_items; - it->key_len = orig_key_len; - it->node = orig_node; - return 1; - } - - unsigned char prevchild = it->key[it->key_len-1]; - if (!noup) { - it->node = raxStackPop(&it->stack); - } else { - noup = 0; - } - - /* Adjust the current key to represent the node we are - * at. */ - int todel = it->node->iscompr ? it->node->size : 1; - raxIteratorDelChars(it,todel); - - /* Try visiting the prev child if there is at least one - * child. */ - if (!it->node->iscompr && it->node->size > (old_noup ? 0 : 1)) { - raxNode **cp = raxNodeLastChildPtr(it->node); - int i = it->node->size-1; - while (i >= 0) { - debugf("SCAN PREV %c\n", it->node->data[i]); - if (it->node->data[i] < prevchild) break; - i--; - cp--; - } - /* If we found a new subtree to explore in this node, - * go deeper following all the last children in order to - * find the key lexicographically greater. */ - if (i != -1) { - debugf("SCAN found a new node\n"); - /* Enter the node we just found. */ - if (!raxIteratorAddChars(it,it->node->data+i,1)) return 0; - if (!raxStackPush(&it->stack,it->node)) return 0; - memcpy(&it->node,cp,sizeof(it->node)); - /* Seek sub-tree max. */ - if (!raxSeekGreatest(it)) return 0; - } - } - - /* Return the key: this could be the key we found scanning a new - * subtree, or if we did not find a new subtree to explore here, - * before giving up with this node, check if it's a key itself. */ - if (it->node->iskey) { - it->data = raxGetData(it->node); - return 1; - } - } -} - -/* Seek an iterator at the specified element. - * Return 0 if the seek failed for syntax error or out of memory. Otherwise - * 1 is returned. When 0 is returned for out of memory, errno is set to - * the ENOMEM value. */ -int raxSeek(raxIterator *it, const char *op, unsigned char *ele, size_t len) { - int eq = 0, lt = 0, gt = 0, first = 0, last = 0; - - it->stack.items = 0; /* Just resetting. Intialized by raxStart(). */ - it->flags |= RAX_ITER_JUST_SEEKED; - it->flags &= ~RAX_ITER_EOF; - it->key_len = 0; - it->node = NULL; - - /* Set flags according to the operator used to perform the seek. */ - if (op[0] == '>') { - gt = 1; - if (op[1] == '=') eq = 1; - } else if (op[0] == '<') { - lt = 1; - if (op[1] == '=') eq = 1; - } else if (op[0] == '=') { - eq = 1; - } else if (op[0] == '^') { - first = 1; - } else if (op[0] == '$') { - last = 1; - } else { - errno = 0; - return 0; /* Error. */ - } - - /* If there are no elements, set the EOF condition immediately and - * return. */ - if (it->rt->numele == 0) { - it->flags |= RAX_ITER_EOF; - return 1; - } - - if (first) { - /* Seeking the first key greater or equal to the empty string - * is equivalent to seeking the smaller key available. */ - return raxSeek(it,">=",NULL,0); - } - - if (last) { - /* Find the greatest key taking always the last child till a - * final node is found. */ - it->node = it->rt->head; - if (!raxSeekGreatest(it)) return 0; - assert(it->node->iskey); - it->data = raxGetData(it->node); - return 1; - } - - /* We need to seek the specified key. What we do here is to actually - * perform a lookup, and later invoke the prev/next key code that - * we already use for iteration. */ - int splitpos = 0; - size_t i = raxLowWalk(it->rt,ele,len,&it->node,NULL,&splitpos,&it->stack); - - /* Return OOM on incomplete stack info. */ - if (it->stack.oom) return 0; - - if (eq && i == len && (!it->node->iscompr || splitpos == 0) && - it->node->iskey) - { - /* We found our node, since the key matches and we have an - * "equal" condition. */ - if (!raxIteratorAddChars(it,ele,len)) return 0; /* OOM. */ - it->data = raxGetData(it->node); - } else if (lt || gt) { - /* Exact key not found or eq flag not set. We have to set as current - * key the one represented by the node we stopped at, and perform - * a next/prev operation to seek. To reconstruct the key at this node - * we start from the parent and go to the current node, accumulating - * the characters found along the way. */ - if (!raxStackPush(&it->stack,it->node)) return 0; - for (size_t j = 1; j < it->stack.items; j++) { - raxNode *parent = it->stack.stack[j-1]; - raxNode *child = it->stack.stack[j]; - if (parent->iscompr) { - if (!raxIteratorAddChars(it,parent->data,parent->size)) - return 0; - } else { - raxNode **cp = raxNodeFirstChildPtr(parent); - unsigned char *p = parent->data; - while(1) { - raxNode *aux; - memcpy(&aux,cp,sizeof(aux)); - if (aux == child) break; - cp++; - p++; - } - if (!raxIteratorAddChars(it,p,1)) return 0; - } - } - raxStackPop(&it->stack); - - /* We need to set the iterator in the correct state to call next/prev - * step in order to seek the desired element. */ - debugf("After initial seek: i=%d len=%d key=%.*s\n", - (int)i, (int)len, (int)it->key_len, it->key); - if (i != len && !it->node->iscompr) { - /* If we stopped in the middle of a normal node because of a - * mismatch, add the mismatching character to the current key - * and call the iterator with the 'noup' flag so that it will try - * to seek the next/prev child in the current node directly based - * on the mismatching character. */ - if (!raxIteratorAddChars(it,ele+i,1)) return 0; - debugf("Seek normal node on mismatch: %.*s\n", - (int)it->key_len, (char*)it->key); - - it->flags &= ~RAX_ITER_JUST_SEEKED; - if (lt && !raxIteratorPrevStep(it,1)) return 0; - if (gt && !raxIteratorNextStep(it,1)) return 0; - it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */ - } else if (i != len && it->node->iscompr) { - debugf("Compressed mismatch: %.*s\n", - (int)it->key_len, (char*)it->key); - /* In case of a mismatch within a compressed node. */ - int nodechar = it->node->data[splitpos]; - int keychar = ele[i]; - it->flags &= ~RAX_ITER_JUST_SEEKED; - if (gt) { - /* If the key the compressed node represents is greater - * than our seek element, continue forward, otherwise set the - * state in order to go back to the next sub-tree. */ - if (nodechar > keychar) { - if (!raxIteratorNextStep(it,0)) return 0; - } else { - if (!raxIteratorAddChars(it,it->node->data,it->node->size)) - return 0; - if (!raxIteratorNextStep(it,1)) return 0; - } - } - if (lt) { - /* If the key the compressed node represents is smaller - * than our seek element, seek the greater key in this - * subtree, otherwise set the state in order to go back to - * the previous sub-tree. */ - if (nodechar < keychar) { - if (!raxSeekGreatest(it)) return 0; - it->data = raxGetData(it->node); - } else { - if (!raxIteratorAddChars(it,it->node->data,it->node->size)) - return 0; - if (!raxIteratorPrevStep(it,1)) return 0; - } - } - it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */ - } else { - debugf("No mismatch: %.*s\n", - (int)it->key_len, (char*)it->key); - /* If there was no mismatch we are into a node representing the - * key, (but which is not a key or the seek operator does not - * include 'eq'), or we stopped in the middle of a compressed node - * after processing all the key. Continue iterating as this was - * a legitimate key we stopped at. */ - it->flags &= ~RAX_ITER_JUST_SEEKED; - if (it->node->iscompr && it->node->iskey && splitpos && lt) { - /* If we stopped in the middle of a compressed node with - * perfect match, and the condition is to seek a key "<" than - * the specified one, then if this node is a key it already - * represents our match. For instance we may have nodes: - * - * "f" -> "oobar" = 1 -> "" = 2 - * - * Representing keys "f" = 1, "foobar" = 2. A seek for - * the key < "foo" will stop in the middle of the "oobar" - * node, but will be our match, representing the key "f". - * - * So in that case, we don't seek backward. */ - } else { - if (gt && !raxIteratorNextStep(it,0)) return 0; - if (lt && !raxIteratorPrevStep(it,0)) return 0; - } - it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */ - } - } else { - /* If we are here just eq was set but no match was found. */ - it->flags |= RAX_ITER_EOF; - return 1; - } - return 1; -} - -/* Go to the next element in the scope of the iterator 'it'. - * If EOF (or out of memory) is reached, 0 is returned, otherwise 1 is - * returned. In case 0 is returned because of OOM, errno is set to ENOMEM. */ -int raxNext(raxIterator *it) { - if (!raxIteratorNextStep(it,0)) { - errno = ENOMEM; - return 0; - } - if (it->flags & RAX_ITER_EOF) { - errno = 0; - return 0; - } - return 1; -} - -/* Go to the previous element in the scope of the iterator 'it'. - * If EOF (or out of memory) is reached, 0 is returned, otherwise 1 is - * returned. In case 0 is returned because of OOM, errno is set to ENOMEM. */ -int raxPrev(raxIterator *it) { - if (!raxIteratorPrevStep(it,0)) { - errno = ENOMEM; - return 0; - } - if (it->flags & RAX_ITER_EOF) { - errno = 0; - return 0; - } - return 1; -} - -/* Perform a random walk starting in the current position of the iterator. - * Return 0 if the tree is empty or on out of memory. Otherwise 1 is returned - * and the iterator is set to the node reached after doing a random walk - * of 'steps' steps. If the 'steps' argument is 0, the random walk is performed - * using a random number of steps between 1 and two times the logarithm of - * the number of elements. - * - * NOTE: if you use this function to generate random elements from the radix - * tree, expect a disappointing distribution. A random walk produces good - * random elements if the tree is not sparse, however in the case of a radix - * tree certain keys will be reported much more often than others. At least - * this function should be able to expore every possible element eventually. */ -int raxRandomWalk(raxIterator *it, size_t steps) { - if (it->rt->numele == 0) { - it->flags |= RAX_ITER_EOF; - return 0; - } - - if (steps == 0) { - size_t fle = floor(log(it->rt->numele)); - fle *= 2; - steps = 1 + rand() % fle; - } - - raxNode *n = it->node; - while(steps > 0 || !n->iskey) { - int numchildren = n->iscompr ? 1 : n->size; - int r = rand() % (numchildren+(n != it->rt->head)); - - if (r == numchildren) { - /* Go up to parent. */ - n = raxStackPop(&it->stack); - int todel = n->iscompr ? n->size : 1; - raxIteratorDelChars(it,todel); - } else { - /* Select a random child. */ - if (n->iscompr) { - if (!raxIteratorAddChars(it,n->data,n->size)) return 0; - } else { - if (!raxIteratorAddChars(it,n->data+r,1)) return 0; - } - raxNode **cp = raxNodeFirstChildPtr(n)+r; - if (!raxStackPush(&it->stack,n)) return 0; - memcpy(&n,cp,sizeof(n)); - } - if (n->iskey) steps--; - } - it->node = n; - return 1; -} - -/* Compare the key currently pointed by the iterator to the specified - * key according to the specified operator. Returns 1 if the comparison is - * true, otherwise 0 is returned. */ -int raxCompare(raxIterator *iter, const char *op, unsigned char *key, size_t key_len) { - int eq = 0, lt = 0, gt = 0; - - if (op[0] == '=' || op[1] == '=') eq = 1; - if (op[0] == '>') gt = 1; - else if (op[0] == '<') lt = 1; - else if (op[1] != '=') return 0; /* Syntax error. */ - - size_t minlen = key_len < iter->key_len ? key_len : iter->key_len; - int cmp = memcmp(iter->key,key,minlen); - - /* Handle == */ - if (lt == 0 && gt == 0) return cmp == 0 && key_len == iter->key_len; - - /* Handle >, >=, <, <= */ - if (cmp == 0) { - /* Same prefix: longer wins. */ - if (eq && key_len == iter->key_len) return 1; - else if (lt) return iter->key_len < key_len; - else if (gt) return iter->key_len > key_len; - } if (cmp > 0) { - return gt ? 1 : 0; - } else /* (cmp < 0) */ { - return lt ? 1 : 0; - } -} - -/* Free the iterator. */ -void raxStop(raxIterator *it) { - if (it->key != it->key_static_string) rax_free(it->key); - raxStackFree(&it->stack); -} - -/* Return if the iterator is in an EOF state. This happens when raxSeek() - * failed to seek an appropriate element, so that raxNext() or raxPrev() - * will return zero, or when an EOF condition was reached while iterating - * with raxNext() and raxPrev(). */ -int raxEOF(raxIterator *it) { - return it->flags & RAX_ITER_EOF; -} - -/* Return the number of elements inside the radix tree. */ -uint64_t raxSize(rax *rax) { - return rax->numele; -} - -/* ----------------------------- Introspection ------------------------------ */ - -/* This function is mostly used for debugging and learning purposes. - * It shows an ASCII representation of a tree on standard output, outling - * all the nodes and the contained keys. - * - * The representation is as follow: - * - * "foobar" (compressed node) - * [abc] (normal node with three children) - * [abc]=0x12345678 (node is a key, pointing to value 0x12345678) - * [] (a normal empty node) - * - * Children are represented in new idented lines, each children prefixed by - * the "`-(x)" string, where "x" is the edge byte. - * - * [abc] - * `-(a) "ladin" - * `-(b) [kj] - * `-(c) [] - * - * However when a node has a single child the following representation - * is used instead: - * - * [abc] -> "ladin" -> [] - */ - -/* The actual implementation of raxShow(). */ -void raxRecursiveShow(int level, int lpad, raxNode *n) { - char s = n->iscompr ? '"' : '['; - char e = n->iscompr ? '"' : ']'; - - int numchars = printf("%c%.*s%c", s, n->size, n->data, e); - if (n->iskey) { - numchars += printf("=%p",raxGetData(n)); - } - - int numchildren = n->iscompr ? 1 : n->size; - /* Note that 7 and 4 magic constants are the string length - * of " `-(x) " and " -> " respectively. */ - if (level) { - lpad += (numchildren > 1) ? 7 : 4; - if (numchildren == 1) lpad += numchars; - } - raxNode **cp = raxNodeFirstChildPtr(n); - for (int i = 0; i < numchildren; i++) { - char *branch = " `-(%c) "; - if (numchildren > 1) { - printf("\n"); - for (int j = 0; j < lpad; j++) putchar(' '); - printf(branch,n->data[i]); - } else { - printf(" -> "); - } - raxNode *child; - memcpy(&child,cp,sizeof(child)); - raxRecursiveShow(level+1,lpad,child); - cp++; - } -} - -/* Show a tree, as outlined in the comment above. */ -void raxShow(rax *rax) { - raxRecursiveShow(0,0,rax->head); - putchar('\n'); -} - -/* Used by debugnode() macro to show info about a given node. */ -void raxDebugShowNode(const char *msg, raxNode *n) { - printf("%s: %p [%.*s] key:%d size:%d children:", - msg, (void*)n, (int)n->size, (char*)n->data, n->iskey, n->size); - int numcld = n->iscompr ? 1 : n->size; - raxNode **cldptr = raxNodeLastChildPtr(n) - (numcld-1); - while(numcld--) { - raxNode *child; - memcpy(&child,cldptr,sizeof(child)); - cldptr++; - printf("%p ", (void*)child); - } - printf("\n"); - fflush(stdout); -} - - |