diff options
| author | Remi Collet <remi@remirepo.net> | 2018-06-14 06:54:34 +0200 | 
|---|---|---|
| committer | Remi Collet <remi@remirepo.net> | 2018-06-14 06:54:34 +0200 | 
| commit | 661d837b26fc7cab302ee2b6dfb54b7681558bf1 (patch) | |
| tree | 8c40ef0527d5b99f273f74f55e409de67be5668c | |
| parent | f801a126bd0cad875bde12663f677b6db2cc0e99 (diff) | |
 Redis 5.0 RC2 (4.9.102) - Released Wed Jun 13 12:49:13 CEST 2018
 Upgrade urgency CRITICAL: This release fixes important security issues.
                     HIGH: This release fixes a SCAN commands family bug.
                 MODERATE: This release fixes a PSYNC2 edge case with expires.
                 MODERATE: Sentinel related fixes.
                      LOW: All the other issues
| -rw-r--r-- | rax.c | 1801 | ||||
| -rw-r--r-- | rax.h | 164 | ||||
| -rw-r--r-- | redis.spec | 28 | 
3 files changed, 1987 insertions, 6 deletions
@@ -0,0 +1,1801 @@ +/* Rax -- A radix tree implementation. + * + * Copyright (c) 2017, Salvatore Sanfilippo <antirez at gmail dot com> + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + *   * Redistributions of source code must retain the above copyright notice, + *     this list of conditions and the following disclaimer. + *   * Redistributions in binary form must reproduce the above copyright + *     notice, this list of conditions and the following disclaimer in the + *     documentation and/or other materials provided with the distribution. + *   * Neither the name of Redis nor the names of its contributors may be used + *     to endorse or promote products derived from this software without + *     specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +#include <stdlib.h> +#include <string.h> +#include <assert.h> +#include <stdio.h> +#include <errno.h> +#include <math.h> +#include "rax.h" + +#ifndef RAX_MALLOC_INCLUDE +#define RAX_MALLOC_INCLUDE "rax_malloc.h" +#endif + +#include RAX_MALLOC_INCLUDE + +/* This is a special pointer that is guaranteed to never have the same value + * of a radix tree node. It's used in order to report "not found" error without + * requiring the function to have multiple return values. */ +void *raxNotFound = (void*)"rax-not-found-pointer"; + +/* -------------------------------- Debugging ------------------------------ */ + +void raxDebugShowNode(const char *msg, raxNode *n); + +/* Turn debugging messages on/off. */ +#if 0 +#define debugf(...)                                                            \ +    do {                                                                       \ +        printf("%s:%s:%d:\t", __FILE__, __FUNCTION__, __LINE__);               \ +        printf(__VA_ARGS__);                                                   \ +        fflush(stdout);                                                        \ +    } while (0); + +#define debugnode(msg,n) raxDebugShowNode(msg,n) +#else +#define debugf(...) +#define debugnode(msg,n) +#endif + +/* ------------------------- raxStack functions -------------------------- + * The raxStack is a simple stack of pointers that is capable of switching + * from using a stack-allocated array to dynamic heap once a given number of + * items are reached. It is used in order to retain the list of parent nodes + * while walking the radix tree in order to implement certain operations that + * need to navigate the tree upward. + * ------------------------------------------------------------------------- */ + +/* Initialize the stack. */ +static inline void raxStackInit(raxStack *ts) { +    ts->stack = ts->static_items; +    ts->items = 0; +    ts->maxitems = RAX_STACK_STATIC_ITEMS; +    ts->oom = 0; +} + +/* Push an item into the stack, returns 1 on success, 0 on out of memory. */ +static inline int raxStackPush(raxStack *ts, void *ptr) { +    if (ts->items == ts->maxitems) { +        if (ts->stack == ts->static_items) { +            ts->stack = rax_malloc(sizeof(void*)*ts->maxitems*2); +            if (ts->stack == NULL) { +                ts->stack = ts->static_items; +                ts->oom = 1; +                errno = ENOMEM; +                return 0; +            } +            memcpy(ts->stack,ts->static_items,sizeof(void*)*ts->maxitems); +        } else { +            void **newalloc = rax_realloc(ts->stack,sizeof(void*)*ts->maxitems*2); +            if (newalloc == NULL) { +                ts->oom = 1; +                errno = ENOMEM; +                return 0; +            } +            ts->stack = newalloc; +        } +        ts->maxitems *= 2; +    } +    ts->stack[ts->items] = ptr; +    ts->items++; +    return 1; +} + +/* Pop an item from the stack, the function returns NULL if there are no + * items to pop. */ +static inline void *raxStackPop(raxStack *ts) { +    if (ts->items == 0) return NULL; +    ts->items--; +    return ts->stack[ts->items]; +} + +/* Return the stack item at the top of the stack without actually consuming + * it. */ +static inline void *raxStackPeek(raxStack *ts) { +    if (ts->items == 0) return NULL; +    return ts->stack[ts->items-1]; +} + +/* Free the stack in case we used heap allocation. */ +static inline void raxStackFree(raxStack *ts) { +    if (ts->stack != ts->static_items) rax_free(ts->stack); +} + +/* ---------------------------------------------------------------------------- + * Radix tree implementation + * --------------------------------------------------------------------------*/ + +/* Allocate a new non compressed node with the specified number of children. + * If datafiled is true, the allocation is made large enough to hold the + * associated data pointer. + * Returns the new node pointer. On out of memory NULL is returned. */ +raxNode *raxNewNode(size_t children, int datafield) { +    size_t nodesize = sizeof(raxNode)+children+ +                      sizeof(raxNode*)*children; +    if (datafield) nodesize += sizeof(void*); +    raxNode *node = rax_malloc(nodesize); +    if (node == NULL) return NULL; +    node->iskey = 0; +    node->isnull = 0; +    node->iscompr = 0; +    node->size = children; +    return node; +} + +/* Allocate a new rax and return its pointer. On out of memory the function + * returns NULL. */ +rax *raxNew(void) { +    rax *rax = rax_malloc(sizeof(*rax)); +    if (rax == NULL) return NULL; +    rax->numele = 0; +    rax->numnodes = 1; +    rax->head = raxNewNode(0,0); +    if (rax->head == NULL) { +        rax_free(rax); +        return NULL; +    } else { +        return rax; +    } +} + +/* Return the current total size of the node. */ +#define raxNodeCurrentLength(n) ( \ +    sizeof(raxNode)+(n)->size+ \ +    ((n)->iscompr ? sizeof(raxNode*) : sizeof(raxNode*)*(n)->size)+ \ +    (((n)->iskey && !(n)->isnull)*sizeof(void*)) \ +) + +/* realloc the node to make room for auxiliary data in order + * to store an item in that node. On out of memory NULL is returned. */ +raxNode *raxReallocForData(raxNode *n, void *data) { +    if (data == NULL) return n; /* No reallocation needed, setting isnull=1 */ +    size_t curlen = raxNodeCurrentLength(n); +    return rax_realloc(n,curlen+sizeof(void*)); +} + +/* Set the node auxiliary data to the specified pointer. */ +void raxSetData(raxNode *n, void *data) { +    n->iskey = 1; +    if (data != NULL) { +        n->isnull = 0; +        void **ndata = (void**) +            ((char*)n+raxNodeCurrentLength(n)-sizeof(void*)); +        memcpy(ndata,&data,sizeof(data)); +    } else { +        n->isnull = 1; +    } +} + +/* Get the node auxiliary data. */ +void *raxGetData(raxNode *n) { +    if (n->isnull) return NULL; +    void **ndata =(void**)((char*)n+raxNodeCurrentLength(n)-sizeof(void*)); +    void *data; +    memcpy(&data,ndata,sizeof(data)); +    return data; +} + +/* Add a new child to the node 'n' representing the character 'c' and return + * its new pointer, as well as the child pointer by reference. Additionally + * '***parentlink' is populated with the raxNode pointer-to-pointer of where + * the new child was stored, which is useful for the caller to replace the + * child pointer if it gets reallocated. + * + * On success the new parent node pointer is returned (it may change because + * of the realloc, so the caller should discard 'n' and use the new value). + * On out of memory NULL is returned, and the old node is still valid. */ +raxNode *raxAddChild(raxNode *n, unsigned char c, raxNode **childptr, raxNode ***parentlink) { +    assert(n->iscompr == 0); + +    size_t curlen = sizeof(raxNode)+ +                    n->size+ +                    sizeof(raxNode*)*n->size; +    size_t newlen; + +    /* Alloc the new child we will link to 'n'. */ +    raxNode *child = raxNewNode(0,0); +    if (child == NULL) return NULL; + +    /* Make space in the original node. */ +    if (n->iskey) curlen += sizeof(void*); +    newlen = curlen+sizeof(raxNode*)+1; /* Add 1 char and 1 pointer. */ +    raxNode *newn = rax_realloc(n,newlen); +    if (newn == NULL) { +        rax_free(child); +        return NULL; +    } +    n = newn; + +    /* After the reallocation, we have 5/9 (depending on the system +     * pointer size) bytes at the end, that is, the additional char +     * in the 'data' section, plus one pointer to the new child: +     * +     * [numc][abx][ap][bp][xp]|auxp|..... +     * +     * Let's find where to insert the new child in order to make sure +     * it is inserted in-place lexicographically. */ +    int pos; +    for (pos = 0; pos < n->size; pos++) { +        if (n->data[pos] > c) break; +    } + +    /* Now, if present, move auxiliary data pointer at the end +     * so that we can mess with the other data without overwriting it. +     * We will obtain something like that: +     * +     * [numc][abx][ap][bp][xp].....|auxp| */ +    unsigned char *src; +    if (n->iskey && !n->isnull) { +        src = n->data+n->size+sizeof(raxNode*)*n->size; +        memmove(src+1+sizeof(raxNode*),src,sizeof(void*)); +    } + +    /* Now imagine we are adding a node with edge 'c'. The insertion +     * point is between 'b' and 'x', so the 'pos' variable value is +     * To start, move all the child pointers after the insertion point +     * of 1+sizeof(pointer) bytes on the right, to obtain: +     * +     * [numc][abx][ap][bp].....[xp]|auxp| */ +    src = n->data+n->size+sizeof(raxNode*)*pos; +    memmove(src+1+sizeof(raxNode*),src,sizeof(raxNode*)*(n->size-pos)); + +    /* Now make the space for the additional char in the data section, +     * but also move the pointers before the insertion point in the right +     * by 1 byte, in order to obtain the following: +     * +     * [numc][ab.x][ap][bp]....[xp]|auxp| */ +    src = n->data+pos; +    memmove(src+1,src,n->size-pos+sizeof(raxNode*)*pos); + +    /* We can now set the character and its child node pointer to get: +     * +     * [numc][abcx][ap][bp][cp]....|auxp| +     * [numc][abcx][ap][bp][cp][xp]|auxp| */ +    n->data[pos] = c; +    n->size++; +    raxNode **childfield = (raxNode**)(n->data+n->size+sizeof(raxNode*)*pos); +    memcpy(childfield,&child,sizeof(child)); +    *childptr = child; +    *parentlink = childfield; +    return n; +} + +/* Return the pointer to the last child pointer in a node. For the compressed + * nodes this is the only child pointer. */ +#define raxNodeLastChildPtr(n) ((raxNode**) ( \ +    ((char*)(n)) + \ +    raxNodeCurrentLength(n) - \ +    sizeof(raxNode*) - \ +    (((n)->iskey && !(n)->isnull) ? sizeof(void*) : 0) \ +)) + +/* Return the pointer to the first child pointer. */ +#define raxNodeFirstChildPtr(n) ((raxNode**)((n)->data+(n)->size)) + +/* Turn the node 'n', that must be a node without any children, into a + * compressed node representing a set of nodes linked one after the other + * and having exactly one child each. The node can be a key or not: this + * property and the associated value if any will be preserved. + * + * The function also returns a child node, since the last node of the + * compressed chain cannot be part of the chain: it has zero children while + * we can only compress inner nodes with exactly one child each. */ +raxNode *raxCompressNode(raxNode *n, unsigned char *s, size_t len, raxNode **child) { +    assert(n->size == 0 && n->iscompr == 0); +    void *data = NULL; /* Initialized only to avoid warnings. */ +    size_t newsize; + +    debugf("Compress node: %.*s\n", (int)len,s); + +    /* Allocate the child to link to this node. */ +    *child = raxNewNode(0,0); +    if (*child == NULL) return NULL; + +    /* Make space in the parent node. */ +    newsize = sizeof(raxNode)+len+sizeof(raxNode*); +    if (n->iskey) { +        data = raxGetData(n); /* To restore it later. */ +        if (!n->isnull) newsize += sizeof(void*); +    } +    raxNode *newn = rax_realloc(n,newsize); +    if (newn == NULL) { +        rax_free(*child); +        return NULL; +    } +    n = newn; + +    n->iscompr = 1; +    n->size = len; +    memcpy(n->data,s,len); +    if (n->iskey) raxSetData(n,data); +    raxNode **childfield = raxNodeLastChildPtr(n); +    memcpy(childfield,child,sizeof(*child)); +    return n; +} + +/* Low level function that walks the tree looking for the string + * 's' of 'len' bytes. The function returns the number of characters + * of the key that was possible to process: if the returned integer + * is the same as 'len', then it means that the node corresponding to the + * string was found (however it may not be a key in case the node->iskey is + * zero or if simply we stopped in the middle of a compressed node, so that + * 'splitpos' is non zero). + * + * Otherwise if the returned integer is not the same as 'len', there was an + * early stop during the tree walk because of a character mismatch. + * + * The node where the search ended (because the full string was processed + * or because there was an early stop) is returned by reference as + * '*stopnode' if the passed pointer is not NULL. This node link in the + * parent's node is returned as '*plink' if not NULL. Finally, if the + * search stopped in a compressed node, '*splitpos' returns the index + * inside the compressed node where the search ended. This is useful to + * know where to split the node for insertion. + * + * Note that when we stop in the middle of a compressed node with + * a perfect match, this function will return a length equal to the + * 'len' argument (all the key matched), and will return a *splitpos which is + * always positive (that will represent the index of the character immediately + * *after* the last match in the current compressed node). + * + * When instead we stop at a compressed node and *splitpos is zero, it + * means that the current node represents the key (that is, none of the + * compressed node characters are needed to represent the key, just all + * its parents nodes). */ +static inline size_t raxLowWalk(rax *rax, unsigned char *s, size_t len, raxNode **stopnode, raxNode ***plink, int *splitpos, raxStack *ts) { +    raxNode *h = rax->head; +    raxNode **parentlink = &rax->head; + +    size_t i = 0; /* Position in the string. */ +    size_t j = 0; /* Position in the node children (or bytes if compressed).*/ +    while(h->size && i < len) { +        debugnode("Lookup current node",h); +        unsigned char *v = h->data; + +        if (h->iscompr) { +            for (j = 0; j < h->size && i < len; j++, i++) { +                if (v[j] != s[i]) break; +            } +            if (j != h->size) break; +        } else { +            /* Even when h->size is large, linear scan provides good +             * performances compared to other approaches that are in theory +             * more sounding, like performing a binary search. */ +            for (j = 0; j < h->size; j++) { +                if (v[j] == s[i]) break; +            } +            if (j == h->size) break; +            i++; +        } + +        if (ts) raxStackPush(ts,h); /* Save stack of parent nodes. */ +        raxNode **children = raxNodeFirstChildPtr(h); +        if (h->iscompr) j = 0; /* Compressed node only child is at index 0. */ +        memcpy(&h,children+j,sizeof(h)); +        parentlink = children+j; +        j = 0; /* If the new node is compressed and we do not +                  iterate again (since i == l) set the split +                  position to 0 to signal this node represents +                  the searched key. */ +    } +    debugnode("Lookup stop node is",h); +    if (stopnode) *stopnode = h; +    if (plink) *plink = parentlink; +    if (splitpos && h->iscompr) *splitpos = j; +    return i; +} + +/* Insert the element 's' of size 'len', setting as auxiliary data + * the pointer 'data'. If the element is already present, the associated + * data is updated (only if 'overwrite' is set to 1), and 0 is returned, + * otherwise the element is inserted and 1 is returned. On out of memory the + * function returns 0 as well but sets errno to ENOMEM, otherwise errno will + * be set to 0. + */ +int raxGenericInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old, int overwrite) { +    size_t i; +    int j = 0; /* Split position. If raxLowWalk() stops in a compressed +                  node, the index 'j' represents the char we stopped within the +                  compressed node, that is, the position where to split the +                  node for insertion. */ +    raxNode *h, **parentlink; + +    debugf("### Insert %.*s with value %p\n", (int)len, s, data); +    i = raxLowWalk(rax,s,len,&h,&parentlink,&j,NULL); + +    /* If i == len we walked following the whole string. If we are not +     * in the middle of a compressed node, the string is either already +     * inserted or this middle node is currently not a key, but can represent +     * our key. We have just to reallocate the node and make space for the +     * data pointer. */ +    if (i == len && (!h->iscompr || j == 0 /* not in the middle if j is 0 */)) { +        debugf("### Insert: node representing key exists\n"); +        /* Make space for the value pointer if needed. */ +        if (!h->iskey || (h->isnull && overwrite)) { +            h = raxReallocForData(h,data); +            if (h) memcpy(parentlink,&h,sizeof(h)); +        } +        if (h == NULL) { +            errno = ENOMEM; +            return 0; +        } + +        /* Update the existing key if there is already one. */ +        if (h->iskey) { +            if (old) *old = raxGetData(h); +            if (overwrite) raxSetData(h,data); +            errno = 0; +            return 0; /* Element already exists. */ +        } + +        /* Otherwise set the node as a key. Note that raxSetData() +         * will set h->iskey. */ +        raxSetData(h,data); +        rax->numele++; +        return 1; /* Element inserted. */ +    } + +    /* If the node we stopped at is a compressed node, we need to +     * split it before to continue. +     * +     * Splitting a compressed node have a few possibile cases. +     * Imagine that the node 'h' we are currently at is a compressed +     * node contaning the string "ANNIBALE" (it means that it represents +     * nodes A -> N -> N -> I -> B -> A -> L -> E with the only child +     * pointer of this node pointing at the 'E' node, because remember that +     * we have characters at the edges of the graph, not inside the nodes +     * themselves. +     * +     * In order to show a real case imagine our node to also point to +     * another compressed node, that finally points at the node without +     * children, representing 'O': +     * +     *     "ANNIBALE" -> "SCO" -> [] +     * +     * When inserting we may face the following cases. Note that all the cases +     * require the insertion of a non compressed node with exactly two +     * children, except for the last case which just requires splitting a +     * compressed node. +     * +     * 1) Inserting "ANNIENTARE" +     * +     *               |B| -> "ALE" -> "SCO" -> [] +     *     "ANNI" -> |-| +     *               |E| -> (... continue algo ...) "NTARE" -> [] +     * +     * 2) Inserting "ANNIBALI" +     * +     *                  |E| -> "SCO" -> [] +     *     "ANNIBAL" -> |-| +     *                  |I| -> (... continue algo ...) [] +     * +     * 3) Inserting "AGO" (Like case 1, but set iscompr = 0 into original node) +     * +     *            |N| -> "NIBALE" -> "SCO" -> [] +     *     |A| -> |-| +     *            |G| -> (... continue algo ...) |O| -> [] +     * +     * 4) Inserting "CIAO" +     * +     *     |A| -> "NNIBALE" -> "SCO" -> [] +     *     |-| +     *     |C| -> (... continue algo ...) "IAO" -> [] +     * +     * 5) Inserting "ANNI" +     * +     *     "ANNI" -> "BALE" -> "SCO" -> [] +     * +     * The final algorithm for insertion covering all the above cases is as +     * follows. +     * +     * ============================= ALGO 1 ============================= +     * +     * For the above cases 1 to 4, that is, all cases where we stopped in +     * the middle of a compressed node for a character mismatch, do: +     * +     * Let $SPLITPOS be the zero-based index at which, in the +     * compressed node array of characters, we found the mismatching +     * character. For example if the node contains "ANNIBALE" and we add +     * "ANNIENTARE" the $SPLITPOS is 4, that is, the index at which the +     * mismatching character is found. +     * +     * 1. Save the current compressed node $NEXT pointer (the pointer to the +     *    child element, that is always present in compressed nodes). +     * +     * 2. Create "split node" having as child the non common letter +     *    at the compressed node. The other non common letter (at the key) +     *    will be added later as we continue the normal insertion algorithm +     *    at step "6". +     * +     * 3a. IF $SPLITPOS == 0: +     *     Replace the old node with the split node, by copying the auxiliary +     *     data if any. Fix parent's reference. Free old node eventually +     *     (we still need its data for the next steps of the algorithm). +     * +     * 3b. IF $SPLITPOS != 0: +     *     Trim the compressed node (reallocating it as well) in order to +     *     contain $splitpos characters. Change chilid pointer in order to link +     *     to the split node. If new compressed node len is just 1, set +     *     iscompr to 0 (layout is the same). Fix parent's reference. +     * +     * 4a. IF the postfix len (the length of the remaining string of the +     *     original compressed node after the split character) is non zero, +     *     create a "postfix node". If the postfix node has just one character +     *     set iscompr to 0, otherwise iscompr to 1. Set the postfix node +     *     child pointer to $NEXT. +     * +     * 4b. IF the postfix len is zero, just use $NEXT as postfix pointer. +     * +     * 5. Set child[0] of split node to postfix node. +     * +     * 6. Set the split node as the current node, set current index at child[1] +     *    and continue insertion algorithm as usually. +     * +     * ============================= ALGO 2 ============================= +     * +     * For case 5, that is, if we stopped in the middle of a compressed +     * node but no mismatch was found, do: +     * +     * Let $SPLITPOS be the zero-based index at which, in the +     * compressed node array of characters, we stopped iterating because +     * there were no more keys character to match. So in the example of +     * the node "ANNIBALE", addig the string "ANNI", the $SPLITPOS is 4. +     * +     * 1. Save the current compressed node $NEXT pointer (the pointer to the +     *    child element, that is always present in compressed nodes). +     * +     * 2. Create a "postfix node" containing all the characters from $SPLITPOS +     *    to the end. Use $NEXT as the postfix node child pointer. +     *    If the postfix node length is 1, set iscompr to 0. +     *    Set the node as a key with the associated value of the new +     *    inserted key. +     * +     * 3. Trim the current node to contain the first $SPLITPOS characters. +     *    As usually if the new node length is just 1, set iscompr to 0. +     *    Take the iskey / associated value as it was in the orignal node. +     *    Fix the parent's reference. +     * +     * 4. Set the postfix node as the only child pointer of the trimmed +     *    node created at step 1. +     */ + +    /* ------------------------- ALGORITHM 1 --------------------------- */ +    if (h->iscompr && i != len) { +        debugf("ALGO 1: Stopped at compressed node %.*s (%p)\n", +            h->size, h->data, (void*)h); +        debugf("Still to insert: %.*s\n", (int)(len-i), s+i); +        debugf("Splitting at %d: '%c'\n", j, ((char*)h->data)[j]); +        debugf("Other (key) letter is '%c'\n", s[i]); + +        /* 1: Save next pointer. */ +        raxNode **childfield = raxNodeLastChildPtr(h); +        raxNode *next; +        memcpy(&next,childfield,sizeof(next)); +        debugf("Next is %p\n", (void*)next); +        debugf("iskey %d\n", h->iskey); +        if (h->iskey) { +            debugf("key value is %p\n", raxGetData(h)); +        } + +        /* Set the length of the additional nodes we will need. */ +        size_t trimmedlen = j; +        size_t postfixlen = h->size - j - 1; +        int split_node_is_key = !trimmedlen && h->iskey && !h->isnull; +        size_t nodesize; + +        /* 2: Create the split node. Also allocate the other nodes we'll need +         *    ASAP, so that it will be simpler to handle OOM. */ +        raxNode *splitnode = raxNewNode(1, split_node_is_key); +        raxNode *trimmed = NULL; +        raxNode *postfix = NULL; + +        if (trimmedlen) { +            nodesize = sizeof(raxNode)+trimmedlen+sizeof(raxNode*); +            if (h->iskey && !h->isnull) nodesize += sizeof(void*); +            trimmed = rax_malloc(nodesize); +        } + +        if (postfixlen) { +            nodesize = sizeof(raxNode)+postfixlen+ +                       sizeof(raxNode*); +            postfix = rax_malloc(nodesize); +        } + +        /* OOM? Abort now that the tree is untouched. */ +        if (splitnode == NULL || +            (trimmedlen && trimmed == NULL) || +            (postfixlen && postfix == NULL)) +        { +            rax_free(splitnode); +            rax_free(trimmed); +            rax_free(postfix); +            errno = ENOMEM; +            return 0; +        } +        splitnode->data[0] = h->data[j]; + +        if (j == 0) { +            /* 3a: Replace the old node with the split node. */ +            if (h->iskey) { +                void *ndata = raxGetData(h); +                raxSetData(splitnode,ndata); +            } +            memcpy(parentlink,&splitnode,sizeof(splitnode)); +        } else { +            /* 3b: Trim the compressed node. */ +            trimmed->size = j; +            memcpy(trimmed->data,h->data,j); +            trimmed->iscompr = j > 1 ? 1 : 0; +            trimmed->iskey = h->iskey; +            trimmed->isnull = h->isnull; +            if (h->iskey && !h->isnull) { +                void *ndata = raxGetData(h); +                raxSetData(trimmed,ndata); +            } +            raxNode **cp = raxNodeLastChildPtr(trimmed); +            memcpy(cp,&splitnode,sizeof(splitnode)); +            memcpy(parentlink,&trimmed,sizeof(trimmed)); +            parentlink = cp; /* Set parentlink to splitnode parent. */ +            rax->numnodes++; +        } + +        /* 4: Create the postfix node: what remains of the original +         * compressed node after the split. */ +        if (postfixlen) { +            /* 4a: create a postfix node. */ +            postfix->iskey = 0; +            postfix->isnull = 0; +            postfix->size = postfixlen; +            postfix->iscompr = postfixlen > 1; +            memcpy(postfix->data,h->data+j+1,postfixlen); +            raxNode **cp = raxNodeLastChildPtr(postfix); +            memcpy(cp,&next,sizeof(next)); +            rax->numnodes++; +        } else { +            /* 4b: just use next as postfix node. */ +            postfix = next; +        } + +        /* 5: Set splitnode first child as the postfix node. */ +        raxNode **splitchild = raxNodeLastChildPtr(splitnode); +        memcpy(splitchild,&postfix,sizeof(postfix)); + +        /* 6. Continue insertion: this will cause the splitnode to +         * get a new child (the non common character at the currently +         * inserted key). */ +        rax_free(h); +        h = splitnode; +    } else if (h->iscompr && i == len) { +    /* ------------------------- ALGORITHM 2 --------------------------- */ +        debugf("ALGO 2: Stopped at compressed node %.*s (%p) j = %d\n", +            h->size, h->data, (void*)h, j); + +        /* Allocate postfix & trimmed nodes ASAP to fail for OOM gracefully. */ +        size_t postfixlen = h->size - j; +        size_t nodesize = sizeof(raxNode)+postfixlen+sizeof(raxNode*); +        if (data != NULL) nodesize += sizeof(void*); +        raxNode *postfix = rax_malloc(nodesize); + +        nodesize = sizeof(raxNode)+j+sizeof(raxNode*); +        if (h->iskey && !h->isnull) nodesize += sizeof(void*); +        raxNode *trimmed = rax_malloc(nodesize); + +        if (postfix == NULL || trimmed == NULL) { +            rax_free(postfix); +            rax_free(trimmed); +            errno = ENOMEM; +            return 0; +        } + +        /* 1: Save next pointer. */ +        raxNode **childfield = raxNodeLastChildPtr(h); +        raxNode *next; +        memcpy(&next,childfield,sizeof(next)); + +        /* 2: Create the postfix node. */ +        postfix->size = postfixlen; +        postfix->iscompr = postfixlen > 1; +        postfix->iskey = 1; +        postfix->isnull = 0; +        memcpy(postfix->data,h->data+j,postfixlen); +        raxSetData(postfix,data); +        raxNode **cp = raxNodeLastChildPtr(postfix); +        memcpy(cp,&next,sizeof(next)); +        rax->numnodes++; + +        /* 3: Trim the compressed node. */ +        trimmed->size = j; +        trimmed->iscompr = j > 1; +        trimmed->iskey = 0; +        trimmed->isnull = 0; +        memcpy(trimmed->data,h->data,j); +        memcpy(parentlink,&trimmed,sizeof(trimmed)); +        if (h->iskey) { +            void *aux = raxGetData(h); +            raxSetData(trimmed,aux); +        } + +        /* Fix the trimmed node child pointer to point to +         * the postfix node. */ +        cp = raxNodeLastChildPtr(trimmed); +        memcpy(cp,&postfix,sizeof(postfix)); + +        /* Finish! We don't need to contine with the insertion +         * algorithm for ALGO 2. The key is already inserted. */ +        rax->numele++; +        rax_free(h); +        return 1; /* Key inserted. */ +    } + +    /* We walked the radix tree as far as we could, but still there are left +     * chars in our string. We need to insert the missing nodes. */ +    while(i < len) { +        raxNode *child; + +        /* If this node is going to have a single child, and there +         * are other characters, so that that would result in a chain +         * of single-childed nodes, turn it into a compressed node. */ +        if (h->size == 0 && len-i > 1) { +            debugf("Inserting compressed node\n"); +            size_t comprsize = len-i; +            if (comprsize > RAX_NODE_MAX_SIZE) +                comprsize = RAX_NODE_MAX_SIZE; +            raxNode *newh = raxCompressNode(h,s+i,comprsize,&child); +            if (newh == NULL) goto oom; +            h = newh; +            memcpy(parentlink,&h,sizeof(h)); +            parentlink = raxNodeLastChildPtr(h); +            i += comprsize; +        } else { +            debugf("Inserting normal node\n"); +            raxNode **new_parentlink; +            raxNode *newh = raxAddChild(h,s[i],&child,&new_parentlink); +            if (newh == NULL) goto oom; +            h = newh; +            memcpy(parentlink,&h,sizeof(h)); +            parentlink = new_parentlink; +            i++; +        } +        rax->numnodes++; +        h = child; +    } +    raxNode *newh = raxReallocForData(h,data); +    if (newh == NULL) goto oom; +    h = newh; +    if (!h->iskey) rax->numele++; +    raxSetData(h,data); +    memcpy(parentlink,&h,sizeof(h)); +    return 1; /* Element inserted. */ + +oom: +    /* This code path handles out of memory after part of the sub-tree was +     * already modified. Set the node as a key, and then remove it. However we +     * do that only if the node is a terminal node, otherwise if the OOM +     * happened reallocating a node in the middle, we don't need to free +     * anything. */ +    if (h->size == 0) { +        h->isnull = 1; +        h->iskey = 1; +        rax->numele++; /* Compensate the next remove. */ +        assert(raxRemove(rax,s,i,NULL) != 0); +    } +    errno = ENOMEM; +    return 0; +} + +/* Overwriting insert. Just a wrapper for raxGenericInsert() that will + * update the element if there is already one for the same key. */ +int raxInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old) { +    return raxGenericInsert(rax,s,len,data,old,1); +} + +/* Non overwriting insert function: this if an element with the same key + * exists, the value is not updated and the function returns 0. + * This is a just a wrapper for raxGenericInsert(). */ +int raxTryInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old) { +    return raxGenericInsert(rax,s,len,data,old,0); +} + +/* Find a key in the rax, returns raxNotFound special void pointer value + * if the item was not found, otherwise the value associated with the + * item is returned. */ +void *raxFind(rax *rax, unsigned char *s, size_t len) { +    raxNode *h; + +    debugf("### Lookup: %.*s\n", (int)len, s); +    int splitpos = 0; +    size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,NULL); +    if (i != len || (h->iscompr && splitpos != 0) || !h->iskey) +        return raxNotFound; +    return raxGetData(h); +} + +/* Return the memory address where the 'parent' node stores the specified + * 'child' pointer, so that the caller can update the pointer with another + * one if needed. The function assumes it will find a match, otherwise the + * operation is an undefined behavior (it will continue scanning the + * memory without any bound checking). */ +raxNode **raxFindParentLink(raxNode *parent, raxNode *child) { +    raxNode **cp = raxNodeFirstChildPtr(parent); +    raxNode *c; +    while(1) { +        memcpy(&c,cp,sizeof(c)); +        if (c == child) break; +        cp++; +    } +    return cp; +} + +/* Low level child removal from node. The new node pointer (after the child + * removal) is returned. Note that this function does not fix the pointer + * of the parent node in its parent, so this task is up to the caller. + * The function never fails for out of memory. */ +raxNode *raxRemoveChild(raxNode *parent, raxNode *child) { +    debugnode("raxRemoveChild before", parent); +    /* If parent is a compressed node (having a single child, as for definition +     * of the data structure), the removal of the child consists into turning +     * it into a normal node without children. */ +    if (parent->iscompr) { +        void *data = NULL; +        if (parent->iskey) data = raxGetData(parent); +        parent->isnull = 0; +        parent->iscompr = 0; +        parent->size = 0; +        if (parent->iskey) raxSetData(parent,data); +        debugnode("raxRemoveChild after", parent); +        return parent; +    } + +    /* Otherwise we need to scan for the children pointer and memmove() +     * accordingly. +     * +     * 1. To start we seek the first element in both the children +     *    pointers and edge bytes in the node. */ +    raxNode **cp = raxNodeFirstChildPtr(parent); +    raxNode **c = cp; +    unsigned char *e = parent->data; + +    /* 2. Search the child pointer to remove inside the array of children +     *    pointers. */ +    while(1) { +        raxNode *aux; +        memcpy(&aux,c,sizeof(aux)); +        if (aux == child) break; +        c++; +        e++; +    } + +    /* 3. Remove the edge and the pointer by memmoving the remaining children +     *    pointer and edge bytes one position before. */ +    int taillen = parent->size - (e - parent->data) - 1; +    debugf("raxRemoveChild tail len: %d\n", taillen); +    memmove(e,e+1,taillen); + +    /* Since we have one data byte less, also child pointers start one byte +     * before now. */ +    memmove(((char*)cp)-1,cp,(parent->size-taillen-1)*sizeof(raxNode**)); + +    /* Move the remaining "tail" pointer at the right position as well. */ +    size_t valuelen = (parent->iskey && !parent->isnull) ? sizeof(void*) : 0; +    memmove(((char*)c)-1,c+1,taillen*sizeof(raxNode**)+valuelen); + +    /* 4. Update size. */ +    parent->size--; + +    /* realloc the node according to the theoretical memory usage, to free +     * data if we are over-allocating right now. */ +    raxNode *newnode = rax_realloc(parent,raxNodeCurrentLength(parent)); +    if (newnode) { +        debugnode("raxRemoveChild after", newnode); +    } +    /* Note: if rax_realloc() fails we just return the old address, which +     * is valid. */ +    return newnode ? newnode : parent; +} + +/* Remove the specified item. Returns 1 if the item was found and + * deleted, 0 otherwise. */ +int raxRemove(rax *rax, unsigned char *s, size_t len, void **old) { +    raxNode *h; +    raxStack ts; + +    debugf("### Delete: %.*s\n", (int)len, s); +    raxStackInit(&ts); +    int splitpos = 0; +    size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,&ts); +    if (i != len || (h->iscompr && splitpos != 0) || !h->iskey) { +        raxStackFree(&ts); +        return 0; +    } +    if (old) *old = raxGetData(h); +    h->iskey = 0; +    rax->numele--; + +    /* If this node has no children, the deletion needs to reclaim the +     * no longer used nodes. This is an iterative process that needs to +     * walk the three upward, deleting all the nodes with just one child +     * that are not keys, until the head of the rax is reached or the first +     * node with more than one child is found. */ + +    int trycompress = 0; /* Will be set to 1 if we should try to optimize the +                            tree resulting from the deletion. */ + +    if (h->size == 0) { +        debugf("Key deleted in node without children. Cleanup needed.\n"); +        raxNode *child = NULL; +        while(h != rax->head) { +            child = h; +            debugf("Freeing child %p [%.*s] key:%d\n", (void*)child, +                (int)child->size, (char*)child->data, child->iskey); +            rax_free(child); +            rax->numnodes--; +            h = raxStackPop(&ts); +             /* If this node has more then one child, or actually holds +              * a key, stop here. */ +            if (h->iskey || (!h->iscompr && h->size != 1)) break; +        } +        if (child) { +            debugf("Unlinking child %p from parent %p\n", +                (void*)child, (void*)h); +            raxNode *new = raxRemoveChild(h,child); +            if (new != h) { +                raxNode *parent = raxStackPeek(&ts); +                raxNode **parentlink; +                if (parent == NULL) { +                    parentlink = &rax->head; +                } else { +                    parentlink = raxFindParentLink(parent,h); +                } +                memcpy(parentlink,&new,sizeof(new)); +            } + +            /* If after the removal the node has just a single child +             * and is not a key, we need to try to compress it. */ +            if (new->size == 1 && new->iskey == 0) { +                trycompress = 1; +                h = new; +            } +        } +    } else if (h->size == 1) { +        /* If the node had just one child, after the removal of the key +         * further compression with adjacent nodes is pontentially possible. */ +        trycompress = 1; +    } + +    /* Don't try node compression if our nodes pointers stack is not +     * complete because of OOM while executing raxLowWalk() */ +    if (trycompress && ts.oom) trycompress = 0; + +    /* Recompression: if trycompress is true, 'h' points to a radix tree node +     * that changed in a way that could allow to compress nodes in this +     * sub-branch. Compressed nodes represent chains of nodes that are not +     * keys and have a single child, so there are two deletion events that +     * may alter the tree so that further compression is needed: +     * +     * 1) A node with a single child was a key and now no longer is a key. +     * 2) A node with two children now has just one child. +     * +     * We try to navigate upward till there are other nodes that can be +     * compressed, when we reach the upper node which is not a key and has +     * a single child, we scan the chain of children to collect the +     * compressable part of the tree, and replace the current node with the +     * new one, fixing the child pointer to reference the first non +     * compressable node. +     * +     * Example of case "1". A tree stores the keys "FOO" = 1 and +     * "FOOBAR" = 2: +     * +     * +     * "FOO" -> "BAR" -> [] (2) +     *           (1) +     * +     * After the removal of "FOO" the tree can be compressed as: +     * +     * "FOOBAR" -> [] (2) +     * +     * +     * Example of case "2". A tree stores the keys "FOOBAR" = 1 and +     * "FOOTER" = 2: +     * +     *          |B| -> "AR" -> [] (1) +     * "FOO" -> |-| +     *          |T| -> "ER" -> [] (2) +     * +     * After the removal of "FOOTER" the resulting tree is: +     * +     * "FOO" -> |B| -> "AR" -> [] (1) +     * +     * That can be compressed into: +     * +     * "FOOBAR" -> [] (1) +     */ +    if (trycompress) { +        debugf("After removing %.*s:\n", (int)len, s); +        debugnode("Compression may be needed",h); +        debugf("Seek start node\n"); + +        /* Try to reach the upper node that is compressible. +         * At the end of the loop 'h' will point to the first node we +         * can try to compress and 'parent' to its parent. */ +        raxNode *parent; +        while(1) { +            parent = raxStackPop(&ts); +            if (!parent || parent->iskey || +                (!parent->iscompr && parent->size != 1)) break; +            h = parent; +            debugnode("Going up to",h); +        } +        raxNode *start = h; /* Compression starting node. */ + +        /* Scan chain of nodes we can compress. */ +        size_t comprsize = h->size; +        int nodes = 1; +        while(h->size != 0) { +            raxNode **cp = raxNodeLastChildPtr(h); +            memcpy(&h,cp,sizeof(h)); +            if (h->iskey || (!h->iscompr && h->size != 1)) break; +            /* Stop here if going to the next node would result into +             * a compressed node larger than h->size can hold. */ +            if (comprsize + h->size > RAX_NODE_MAX_SIZE) break; +            nodes++; +            comprsize += h->size; +        } +        if (nodes > 1) { +            /* If we can compress, create the new node and populate it. */ +            size_t nodesize = +                sizeof(raxNode)+comprsize+sizeof(raxNode*); +            raxNode *new = rax_malloc(nodesize); +            /* An out of memory here just means we cannot optimize this +             * node, but the tree is left in a consistent state. */ +            if (new == NULL) { +                raxStackFree(&ts); +                return 1; +            } +            new->iskey = 0; +            new->isnull = 0; +            new->iscompr = 1; +            new->size = comprsize; +            rax->numnodes++; + +            /* Scan again, this time to populate the new node content and +             * to fix the new node child pointer. At the same time we free +             * all the nodes that we'll no longer use. */ +            comprsize = 0; +            h = start; +            while(h->size != 0) { +                memcpy(new->data+comprsize,h->data,h->size); +                comprsize += h->size; +                raxNode **cp = raxNodeLastChildPtr(h); +                raxNode *tofree = h; +                memcpy(&h,cp,sizeof(h)); +                rax_free(tofree); rax->numnodes--; +                if (h->iskey || (!h->iscompr && h->size != 1)) break; +            } +            debugnode("New node",new); + +            /* Now 'h' points to the first node that we still need to use, +             * so our new node child pointer will point to it. */ +            raxNode **cp = raxNodeLastChildPtr(new); +            memcpy(cp,&h,sizeof(h)); + +            /* Fix parent link. */ +            if (parent) { +                raxNode **parentlink = raxFindParentLink(parent,start); +                memcpy(parentlink,&new,sizeof(new)); +            } else { +                rax->head = new; +            } + +            debugf("Compressed %d nodes, %d total bytes\n", +                nodes, (int)comprsize); +        } +    } +    raxStackFree(&ts); +    return 1; +} + +/* This is the core of raxFree(): performs a depth-first scan of the + * tree and releases all the nodes found. */ +void raxRecursiveFree(rax *rax, raxNode *n, void (*free_callback)(void*)) { +    debugnode("free traversing",n); +    int numchildren = n->iscompr ? 1 : n->size; +    raxNode **cp = raxNodeLastChildPtr(n); +    while(numchildren--) { +        raxNode *child; +        memcpy(&child,cp,sizeof(child)); +        raxRecursiveFree(rax,child,free_callback); +        cp--; +    } +    debugnode("free depth-first",n); +    if (free_callback && n->iskey && !n->isnull) +        free_callback(raxGetData(n)); +    rax_free(n); +    rax->numnodes--; +} + +/* Free a whole radix tree, calling the specified callback in order to + * free the auxiliary data. */ +void raxFreeWithCallback(rax *rax, void (*free_callback)(void*)) { +    raxRecursiveFree(rax,rax->head,free_callback); +    assert(rax->numnodes == 0); +    rax_free(rax); +} + +/* Free a whole radix tree. */ +void raxFree(rax *rax) { +    raxFreeWithCallback(rax,NULL); +} + +/* ------------------------------- Iterator --------------------------------- */ + +/* Initialize a Rax iterator. This call should be performed a single time + * to initialize the iterator, and must be followed by a raxSeek() call, + * otherwise the raxPrev()/raxNext() functions will just return EOF. */ +void raxStart(raxIterator *it, rax *rt) { +    it->flags = RAX_ITER_EOF; /* No crash if the iterator is not seeked. */ +    it->rt = rt; +    it->key_len = 0; +    it->key = it->key_static_string; +    it->key_max = RAX_ITER_STATIC_LEN; +    it->data = NULL; +    raxStackInit(&it->stack); +} + +/* Append characters at the current key string of the iterator 'it'. This + * is a low level function used to implement the iterator, not callable by + * the user. Returns 0 on out of memory, otherwise 1 is returned. */ +int raxIteratorAddChars(raxIterator *it, unsigned char *s, size_t len) { +    if (it->key_max < it->key_len+len) { +        unsigned char *old = (it->key == it->key_static_string) ? NULL : +                                                                  it->key; +        size_t new_max = (it->key_len+len)*2; +        it->key = rax_realloc(old,new_max); +        if (it->key == NULL) { +            it->key = (!old) ? it->key_static_string : old; +            errno = ENOMEM; +            return 0; +        } +        if (old == NULL) memcpy(it->key,it->key_static_string,it->key_len); +        it->key_max = new_max; +    } +    /* Use memmove since there could be an overlap between 's' and +     * it->key when we use the current key in order to re-seek. */ +    memmove(it->key+it->key_len,s,len); +    it->key_len += len; +    return 1; +} + +/* Remove the specified number of chars from the right of the current + * iterator key. */ +void raxIteratorDelChars(raxIterator *it, size_t count) { +    it->key_len -= count; +} + +/* Do an iteration step towards the next element. At the end of the step the + * iterator key will represent the (new) current key. If it is not possible + * to step in the specified direction since there are no longer elements, the + * iterator is flagged with RAX_ITER_EOF. + * + * If 'noup' is true the function starts directly scanning for the next + * lexicographically smaller children, and the current node is already assumed + * to be the parent of the last key node, so the first operation to go back to + * the parent will be skipped. This option is used by raxSeek() when + * implementing seeking a non existing element with the ">" or "<" options: + * the starting node is not a key in that particular case, so we start the scan + * from a node that does not represent the key set. + * + * The function returns 1 on success or 0 on out of memory. */ +int raxIteratorNextStep(raxIterator *it, int noup) { +    if (it->flags & RAX_ITER_EOF) { +        return 1; +    } else if (it->flags & RAX_ITER_JUST_SEEKED) { +        it->flags &= ~RAX_ITER_JUST_SEEKED; +        return 1; +    } + +    /* Save key len, stack items and the node where we are currently +     * so that on iterator EOF we can restore the current key and state. */ +    size_t orig_key_len = it->key_len; +    size_t orig_stack_items = it->stack.items; +    raxNode *orig_node = it->node; + +    while(1) { +        int children = it->node->iscompr ? 1 : it->node->size; +        if (!noup && children) { +            debugf("GO DEEPER\n"); +            /* Seek the lexicographically smaller key in this subtree, which +             * is the first one found always going torwards the first child +             * of every successive node. */ +            if (!raxStackPush(&it->stack,it->node)) return 0; +            raxNode **cp = raxNodeFirstChildPtr(it->node); +            if (!raxIteratorAddChars(it,it->node->data, +                it->node->iscompr ? it->node->size : 1)) return 0; +            memcpy(&it->node,cp,sizeof(it->node)); +            /* For "next" step, stop every time we find a key along the +             * way, since the key is lexicograhically smaller compared to +             * what follows in the sub-children. */ +            if (it->node->iskey) { +                it->data = raxGetData(it->node); +                return 1; +            } +        } else { +            /* If we finished exporing the previous sub-tree, switch to the +             * new one: go upper until a node is found where there are +             * children representing keys lexicographically greater than the +             * current key. */ +            while(1) { +                int old_noup = noup; + +                /* Already on head? Can't go up, iteration finished. */ +                if (!noup && it->node == it->rt->head) { +                    it->flags |= RAX_ITER_EOF; +                    it->stack.items = orig_stack_items; +                    it->key_len = orig_key_len; +                    it->node = orig_node; +                    return 1; +                } +                /* If there are no children at the current node, try parent's +                 * next child. */ +                unsigned char prevchild = it->key[it->key_len-1]; +                if (!noup) { +                    it->node = raxStackPop(&it->stack); +                } else { +                    noup = 0; +                } +                /* Adjust the current key to represent the node we are +                 * at. */ +                int todel = it->node->iscompr ? it->node->size : 1; +                raxIteratorDelChars(it,todel); + +                /* Try visiting the next child if there was at least one +                 * additional child. */ +                if (!it->node->iscompr && it->node->size > (old_noup ? 0 : 1)) { +                    raxNode **cp = raxNodeFirstChildPtr(it->node); +                    int i = 0; +                    while (i < it->node->size) { +                        debugf("SCAN NEXT %c\n", it->node->data[i]); +                        if (it->node->data[i] > prevchild) break; +                        i++; +                        cp++; +                    } +                    if (i != it->node->size) { +                        debugf("SCAN found a new node\n"); +                        raxIteratorAddChars(it,it->node->data+i,1); +                        if (!raxStackPush(&it->stack,it->node)) return 0; +                        memcpy(&it->node,cp,sizeof(it->node)); +                        if (it->node->iskey) { +                            it->data = raxGetData(it->node); +                            return 1; +                        } +                        break; +                    } +                } +            } +        } +    } +} + +/* Seek the grestest key in the subtree at the current node. Return 0 on + * out of memory, otherwise 1. This is an helper function for different + * iteration functions below. */ +int raxSeekGreatest(raxIterator *it) { +    while(it->node->size) { +        if (it->node->iscompr) { +            if (!raxIteratorAddChars(it,it->node->data, +                it->node->size)) return 0; +        } else { +            if (!raxIteratorAddChars(it,it->node->data+it->node->size-1,1)) +                return 0; +        } +        raxNode **cp = raxNodeLastChildPtr(it->node); +        if (!raxStackPush(&it->stack,it->node)) return 0; +        memcpy(&it->node,cp,sizeof(it->node)); +    } +    return 1; +} + +/* Like raxIteratorNextStep() but implements an iteration step moving + * to the lexicographically previous element. The 'noup' option has a similar + * effect to the one of raxIteratorPrevSte(). */ +int raxIteratorPrevStep(raxIterator *it, int noup) { +    if (it->flags & RAX_ITER_EOF) { +        return 1; +    } else if (it->flags & RAX_ITER_JUST_SEEKED) { +        it->flags &= ~RAX_ITER_JUST_SEEKED; +        return 1; +    } + +    /* Save key len, stack items and the node where we are currently +     * so that on iterator EOF we can restore the current key and state. */ +    size_t orig_key_len = it->key_len; +    size_t orig_stack_items = it->stack.items; +    raxNode *orig_node = it->node; + +    while(1) { +        int old_noup = noup; + +        /* Already on head? Can't go up, iteration finished. */ +        if (!noup && it->node == it->rt->head) { +            it->flags |= RAX_ITER_EOF; +            it->stack.items = orig_stack_items; +            it->key_len = orig_key_len; +            it->node = orig_node; +            return 1; +        } + +        unsigned char prevchild = it->key[it->key_len-1]; +        if (!noup) { +            it->node = raxStackPop(&it->stack); +        } else { +            noup = 0; +        } + +        /* Adjust the current key to represent the node we are +         * at. */ +        int todel = it->node->iscompr ? it->node->size : 1; +        raxIteratorDelChars(it,todel); + +        /* Try visiting the prev child if there is at least one +         * child. */ +        if (!it->node->iscompr && it->node->size > (old_noup ? 0 : 1)) { +            raxNode **cp = raxNodeLastChildPtr(it->node); +            int i = it->node->size-1; +            while (i >= 0) { +                debugf("SCAN PREV %c\n", it->node->data[i]); +                if (it->node->data[i] < prevchild) break; +                i--; +                cp--; +            } +            /* If we found a new subtree to explore in this node, +             * go deeper following all the last children in order to +             * find the key lexicographically greater. */ +            if (i != -1) { +                debugf("SCAN found a new node\n"); +                /* Enter the node we just found. */ +                if (!raxIteratorAddChars(it,it->node->data+i,1)) return 0; +                if (!raxStackPush(&it->stack,it->node)) return 0; +                memcpy(&it->node,cp,sizeof(it->node)); +                /* Seek sub-tree max. */ +                if (!raxSeekGreatest(it)) return 0; +            } +        } + +        /* Return the key: this could be the key we found scanning a new +         * subtree, or if we did not find a new subtree to explore here, +         * before giving up with this node, check if it's a key itself. */ +        if (it->node->iskey) { +            it->data = raxGetData(it->node); +            return 1; +        } +    } +} + +/* Seek an iterator at the specified element. + * Return 0 if the seek failed for syntax error or out of memory. Otherwise + * 1 is returned. When 0 is returned for out of memory, errno is set to + * the ENOMEM value. */ +int raxSeek(raxIterator *it, const char *op, unsigned char *ele, size_t len) { +    int eq = 0, lt = 0, gt = 0, first = 0, last = 0; + +    it->stack.items = 0; /* Just resetting. Intialized by raxStart(). */ +    it->flags |= RAX_ITER_JUST_SEEKED; +    it->flags &= ~RAX_ITER_EOF; +    it->key_len = 0; +    it->node = NULL; + +    /* Set flags according to the operator used to perform the seek. */ +    if (op[0] == '>') { +        gt = 1; +        if (op[1] == '=') eq = 1; +    } else if (op[0] == '<') { +        lt = 1; +        if (op[1] == '=') eq = 1; +    } else if (op[0] == '=') { +        eq = 1; +    } else if (op[0] == '^') { +        first = 1; +    } else if (op[0] == '$') { +        last = 1; +    } else { +        errno = 0; +        return 0; /* Error. */ +    } + +    /* If there are no elements, set the EOF condition immediately and +     * return. */ +    if (it->rt->numele == 0) { +        it->flags |= RAX_ITER_EOF; +        return 1; +    } + +    if (first) { +        /* Seeking the first key greater or equal to the empty string +         * is equivalent to seeking the smaller key available. */ +        return raxSeek(it,">=",NULL,0); +    } + +    if (last) { +        /* Find the greatest key taking always the last child till a +         * final node is found. */ +        it->node = it->rt->head; +        if (!raxSeekGreatest(it)) return 0; +        assert(it->node->iskey); +        it->data = raxGetData(it->node); +        return 1; +    } + +    /* We need to seek the specified key. What we do here is to actually +     * perform a lookup, and later invoke the prev/next key code that +     * we already use for iteration. */ +    int splitpos = 0; +    size_t i = raxLowWalk(it->rt,ele,len,&it->node,NULL,&splitpos,&it->stack); + +    /* Return OOM on incomplete stack info. */ +    if (it->stack.oom) return 0; + +    if (eq && i == len && (!it->node->iscompr || splitpos == 0) && +        it->node->iskey) +    { +        /* We found our node, since the key matches and we have an +         * "equal" condition. */ +        if (!raxIteratorAddChars(it,ele,len)) return 0; /* OOM. */ +        it->data = raxGetData(it->node); +    } else if (lt || gt) { +        /* Exact key not found or eq flag not set. We have to set as current +         * key the one represented by the node we stopped at, and perform +         * a next/prev operation to seek. To reconstruct the key at this node +         * we start from the parent and go to the current node, accumulating +         * the characters found along the way. */ +        if (!raxStackPush(&it->stack,it->node)) return 0; +        for (size_t j = 1; j < it->stack.items; j++) { +            raxNode *parent = it->stack.stack[j-1]; +            raxNode *child = it->stack.stack[j]; +            if (parent->iscompr) { +                if (!raxIteratorAddChars(it,parent->data,parent->size)) +                    return 0; +            } else { +                raxNode **cp = raxNodeFirstChildPtr(parent); +                unsigned char *p = parent->data; +                while(1) { +                    raxNode *aux; +                    memcpy(&aux,cp,sizeof(aux)); +                    if (aux == child) break; +                    cp++; +                    p++; +                } +                if (!raxIteratorAddChars(it,p,1)) return 0; +            } +        } +        raxStackPop(&it->stack); + +        /* We need to set the iterator in the correct state to call next/prev +         * step in order to seek the desired element. */ +        debugf("After initial seek: i=%d len=%d key=%.*s\n", +            (int)i, (int)len, (int)it->key_len, it->key); +        if (i != len && !it->node->iscompr) { +            /* If we stopped in the middle of a normal node because of a +             * mismatch, add the mismatching character to the current key +             * and call the iterator with the 'noup' flag so that it will try +             * to seek the next/prev child in the current node directly based +             * on the mismatching character. */ +            if (!raxIteratorAddChars(it,ele+i,1)) return 0; +            debugf("Seek normal node on mismatch: %.*s\n", +                (int)it->key_len, (char*)it->key); + +            it->flags &= ~RAX_ITER_JUST_SEEKED; +            if (lt && !raxIteratorPrevStep(it,1)) return 0; +            if (gt && !raxIteratorNextStep(it,1)) return 0; +            it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */ +        } else if (i != len && it->node->iscompr) { +            debugf("Compressed mismatch: %.*s\n", +                (int)it->key_len, (char*)it->key); +            /* In case of a mismatch within a compressed node. */ +            int nodechar = it->node->data[splitpos]; +            int keychar = ele[i]; +            it->flags &= ~RAX_ITER_JUST_SEEKED; +            if (gt) { +                /* If the key the compressed node represents is greater +                 * than our seek element, continue forward, otherwise set the +                 * state in order to go back to the next sub-tree. */ +                if (nodechar > keychar) { +                    if (!raxIteratorNextStep(it,0)) return 0; +                } else { +                    if (!raxIteratorAddChars(it,it->node->data,it->node->size)) +                        return 0; +                    if (!raxIteratorNextStep(it,1)) return 0; +                } +            } +            if (lt) { +                /* If the key the compressed node represents is smaller +                 * than our seek element, seek the greater key in this +                 * subtree, otherwise set the state in order to go back to +                 * the previous sub-tree. */ +                if (nodechar < keychar) { +                    if (!raxSeekGreatest(it)) return 0; +                    it->data = raxGetData(it->node); +                } else { +                    if (!raxIteratorAddChars(it,it->node->data,it->node->size)) +                        return 0; +                    if (!raxIteratorPrevStep(it,1)) return 0; +                } +            } +            it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */ +        } else { +            debugf("No mismatch: %.*s\n", +                (int)it->key_len, (char*)it->key); +            /* If there was no mismatch we are into a node representing the +             * key, (but which is not a key or the seek operator does not +             * include 'eq'), or we stopped in the middle of a compressed node +             * after processing all the key. Continue iterating as this was +             * a legitimate key we stopped at. */ +            it->flags &= ~RAX_ITER_JUST_SEEKED; +            if (it->node->iscompr && it->node->iskey && splitpos && lt) { +                /* If we stopped in the middle of a compressed node with +                 * perfect match, and the condition is to seek a key "<" than +                 * the specified one, then if this node is a key it already +                 * represents our match. For instance we may have nodes: +                 * +                 * "f" -> "oobar" = 1 -> "" = 2 +                 * +                 * Representing keys "f" = 1, "foobar" = 2. A seek for +                 * the key < "foo" will stop in the middle of the "oobar" +                 * node, but will be our match, representing the key "f". +                 * +                 * So in that case, we don't seek backward. */ +            } else { +                if (gt && !raxIteratorNextStep(it,0)) return 0; +                if (lt && !raxIteratorPrevStep(it,0)) return 0; +            } +            it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */ +        } +    } else { +        /* If we are here just eq was set but no match was found. */ +        it->flags |= RAX_ITER_EOF; +        return 1; +    } +    return 1; +} + +/* Go to the next element in the scope of the iterator 'it'. + * If EOF (or out of memory) is reached, 0 is returned, otherwise 1 is + * returned. In case 0 is returned because of OOM, errno is set to ENOMEM. */ +int raxNext(raxIterator *it) { +    if (!raxIteratorNextStep(it,0)) { +        errno = ENOMEM; +        return 0; +    } +    if (it->flags & RAX_ITER_EOF) { +        errno = 0; +        return 0; +    } +    return 1; +} + +/* Go to the previous element in the scope of the iterator 'it'. + * If EOF (or out of memory) is reached, 0 is returned, otherwise 1 is + * returned. In case 0 is returned because of OOM, errno is set to ENOMEM. */ +int raxPrev(raxIterator *it) { +    if (!raxIteratorPrevStep(it,0)) { +        errno = ENOMEM; +        return 0; +    } +    if (it->flags & RAX_ITER_EOF) { +        errno = 0; +        return 0; +    } +    return 1; +} + +/* Perform a random walk starting in the current position of the iterator. + * Return 0 if the tree is empty or on out of memory. Otherwise 1 is returned + * and the iterator is set to the node reached after doing a random walk + * of 'steps' steps. If the 'steps' argument is 0, the random walk is performed + * using a random number of steps between 1 and two times the logarithm of + * the number of elements. + * + * NOTE: if you use this function to generate random elements from the radix + * tree, expect a disappointing distribution. A random walk produces good + * random elements if the tree is not sparse, however in the case of a radix + * tree certain keys will be reported much more often than others. At least + * this function should be able to expore every possible element eventually. */ +int raxRandomWalk(raxIterator *it, size_t steps) { +    if (it->rt->numele == 0) { +        it->flags |= RAX_ITER_EOF; +        return 0; +    } + +    if (steps == 0) { +        size_t fle = floor(log(it->rt->numele)); +        fle *= 2; +        steps = 1 + rand() % fle; +    } + +    raxNode *n = it->node; +    while(steps > 0 || !n->iskey) { +        int numchildren = n->iscompr ? 1 : n->size; +        int r = rand() % (numchildren+(n != it->rt->head)); + +        if (r == numchildren) { +            /* Go up to parent. */ +            n = raxStackPop(&it->stack); +            int todel = n->iscompr ? n->size : 1; +            raxIteratorDelChars(it,todel); +        } else { +            /* Select a random child. */ +            if (n->iscompr) { +                if (!raxIteratorAddChars(it,n->data,n->size)) return 0; +            } else { +                if (!raxIteratorAddChars(it,n->data+r,1)) return 0; +            } +            raxNode **cp = raxNodeFirstChildPtr(n)+r; +            if (!raxStackPush(&it->stack,n)) return 0; +            memcpy(&n,cp,sizeof(n)); +        } +        if (n->iskey) steps--; +    } +    it->node = n; +    return 1; +} + +/* Compare the key currently pointed by the iterator to the specified + * key according to the specified operator. Returns 1 if the comparison is + * true, otherwise 0 is returned. */ +int raxCompare(raxIterator *iter, const char *op, unsigned char *key, size_t key_len) { +    int eq = 0, lt = 0, gt = 0; + +    if (op[0] == '=' || op[1] == '=') eq = 1; +    if (op[0] == '>') gt = 1; +    else if (op[0] == '<') lt = 1; +    else if (op[1] != '=') return 0; /* Syntax error. */ + +    size_t minlen = key_len < iter->key_len ? key_len : iter->key_len; +    int cmp = memcmp(iter->key,key,minlen); + +    /* Handle == */ +    if (lt == 0 && gt == 0) return cmp == 0 && key_len == iter->key_len; + +    /* Handle >, >=, <, <= */ +    if (cmp == 0) { +        /* Same prefix: longer wins. */ +        if (eq && key_len == iter->key_len) return 1; +        else if (lt) return iter->key_len < key_len; +        else if (gt) return iter->key_len > key_len; +    } if (cmp > 0) { +        return gt ? 1 : 0; +    } else /* (cmp < 0) */ { +        return lt ? 1 : 0; +    } +} + +/* Free the iterator. */ +void raxStop(raxIterator *it) { +    if (it->key != it->key_static_string) rax_free(it->key); +    raxStackFree(&it->stack); +} + +/* Return if the iterator is in an EOF state. This happens when raxSeek() + * failed to seek an appropriate element, so that raxNext() or raxPrev() + * will return zero, or when an EOF condition was reached while iterating + * with raxNext() and raxPrev(). */ +int raxEOF(raxIterator *it) { +    return it->flags & RAX_ITER_EOF; +} + +/* Return the number of elements inside the radix tree. */ +uint64_t raxSize(rax *rax) { +    return rax->numele; +} + +/* ----------------------------- Introspection ------------------------------ */ + +/* This function is mostly used for debugging and learning purposes. + * It shows an ASCII representation of a tree on standard output, outling + * all the nodes and the contained keys. + * + * The representation is as follow: + * + *  "foobar" (compressed node) + *  [abc] (normal node with three children) + *  [abc]=0x12345678 (node is a key, pointing to value 0x12345678) + *  [] (a normal empty node) + * + *  Children are represented in new idented lines, each children prefixed by + *  the "`-(x)" string, where "x" is the edge byte. + * + *  [abc] + *   `-(a) "ladin" + *   `-(b) [kj] + *   `-(c) [] + * + *  However when a node has a single child the following representation + *  is used instead: + * + *  [abc] -> "ladin" -> [] + */ + +/* The actual implementation of raxShow(). */ +void raxRecursiveShow(int level, int lpad, raxNode *n) { +    char s = n->iscompr ? '"' : '['; +    char e = n->iscompr ? '"' : ']'; + +    int numchars = printf("%c%.*s%c", s, n->size, n->data, e); +    if (n->iskey) { +        numchars += printf("=%p",raxGetData(n)); +    } + +    int numchildren = n->iscompr ? 1 : n->size; +    /* Note that 7 and 4 magic constants are the string length +     * of " `-(x) " and " -> " respectively. */ +    if (level) { +        lpad += (numchildren > 1) ? 7 : 4; +        if (numchildren == 1) lpad += numchars; +    } +    raxNode **cp = raxNodeFirstChildPtr(n); +    for (int i = 0; i < numchildren; i++) { +        char *branch = " `-(%c) "; +        if (numchildren > 1) { +            printf("\n"); +            for (int j = 0; j < lpad; j++) putchar(' '); +            printf(branch,n->data[i]); +        } else { +            printf(" -> "); +        } +        raxNode *child; +        memcpy(&child,cp,sizeof(child)); +        raxRecursiveShow(level+1,lpad,child); +        cp++; +    } +} + +/* Show a tree, as outlined in the comment above. */ +void raxShow(rax *rax) { +    raxRecursiveShow(0,0,rax->head); +    putchar('\n'); +} + +/* Used by debugnode() macro to show info about a given node. */ +void raxDebugShowNode(const char *msg, raxNode *n) { +    printf("%s: %p [%.*s] key:%d size:%d children:", +        msg, (void*)n, (int)n->size, (char*)n->data, n->iskey, n->size); +    int numcld = n->iscompr ? 1 : n->size; +    raxNode **cldptr = raxNodeLastChildPtr(n) - (numcld-1); +    while(numcld--) { +        raxNode *child; +        memcpy(&child,cldptr,sizeof(child)); +        cldptr++; +        printf("%p ", (void*)child); +    } +    printf("\n"); +    fflush(stdout); +} + + @@ -0,0 +1,164 @@ +#ifndef RAX_H +#define RAX_H + +#include <stdint.h> + +/* Representation of a radix tree as implemented in this file, that contains + * the strings "foo", "foobar" and "footer" after the insertion of each + * word. When the node represents a key inside the radix tree, we write it + * between [], otherwise it is written between (). + * + * This is the vanilla representation: + * + *              (f) "" + *                \ + *                (o) "f" + *                  \ + *                  (o) "fo" + *                    \ + *                  [t   b] "foo" + *                  /     \ + *         "foot" (e)     (a) "foob" + *                /         \ + *      "foote" (r)         (r) "fooba" + *              /             \ + *    "footer" []             [] "foobar" + * + * However, this implementation implements a very common optimization where + * successive nodes having a single child are "compressed" into the node + * itself as a string of characters, each representing a next-level child, + * and only the link to the node representing the last character node is + * provided inside the representation. So the above representation is turend + * into: + * + *                  ["foo"] "" + *                     | + *                  [t   b] "foo" + *                  /     \ + *        "foot" ("er")    ("ar") "foob" + *                 /          \ + *       "footer" []          [] "foobar" + * + * However this optimization makes the implementation a bit more complex. + * For instance if a key "first" is added in the above radix tree, a + * "node splitting" operation is needed, since the "foo" prefix is no longer + * composed of nodes having a single child one after the other. This is the + * above tree and the resulting node splitting after this event happens: + * + * + *                    (f) "" + *                    / + *                 (i o) "f" + *                 /   \ + *    "firs"  ("rst")  (o) "fo" + *              /        \ + *    "first" []       [t   b] "foo" + *                     /     \ + *           "foot" ("er")    ("ar") "foob" + *                    /          \ + *          "footer" []          [] "foobar" + * + * Similarly after deletion, if a new chain of nodes having a single child + * is created (the chain must also not include nodes that represent keys), + * it must be compressed back into a single node. + * + */ + +#define RAX_NODE_MAX_SIZE ((1<<29)-1) +typedef struct raxNode { +    uint32_t iskey:1;     /* Does this node contain a key? */ +    uint32_t isnull:1;    /* Associated value is NULL (don't store it). */ +    uint32_t iscompr:1;   /* Node is compressed. */ +    uint32_t size:29;     /* Number of children, or compressed string len. */ +    /* Data layout is as follows: +     * +     * If node is not compressed we have 'size' bytes, one for each children +     * character, and 'size' raxNode pointers, point to each child node. +     * Note how the character is not stored in the children but in the +     * edge of the parents: +     * +     * [header strlen=0][abc][a-ptr][b-ptr][c-ptr](value-ptr?) +     * +     * if node is compressed (strlen != 0) the node has 1 children. +     * In that case the 'size' bytes of the string stored immediately at +     * the start of the data section, represent a sequence of successive +     * nodes linked one after the other, for which only the last one in +     * the sequence is actually represented as a node, and pointed to by +     * the current compressed node. +     * +     * [header strlen=3][xyz][z-ptr](value-ptr?) +     * +     * Both compressed and not compressed nodes can represent a key +     * with associated data in the radix tree at any level (not just terminal +     * nodes). +     * +     * If the node has an associated key (iskey=1) and is not NULL +     * (isnull=0), then after the raxNode pointers poiting to the +     * childen, an additional value pointer is present (as you can see +     * in the representation above as "value-ptr" field). +     */ +    unsigned char data[]; +} raxNode; + +typedef struct rax { +    raxNode *head; +    uint64_t numele; +    uint64_t numnodes; +} rax; + +/* Stack data structure used by raxLowWalk() in order to, optionally, return + * a list of parent nodes to the caller. The nodes do not have a "parent" + * field for space concerns, so we use the auxiliary stack when needed. */ +#define RAX_STACK_STATIC_ITEMS 32 +typedef struct raxStack { +    void **stack; /* Points to static_items or an heap allocated array. */ +    size_t items, maxitems; /* Number of items contained and total space. */ +    /* Up to RAXSTACK_STACK_ITEMS items we avoid to allocate on the heap +     * and use this static array of pointers instead. */ +    void *static_items[RAX_STACK_STATIC_ITEMS]; +    int oom; /* True if pushing into this stack failed for OOM at some point. */ +} raxStack; + +/* Radix tree iterator state is encapsulated into this data structure. */ +#define RAX_ITER_STATIC_LEN 128 +#define RAX_ITER_JUST_SEEKED (1<<0) /* Iterator was just seeked. Return current +                                       element for the first iteration and +                                       clear the flag. */ +#define RAX_ITER_EOF (1<<1)    /* End of iteration reached. */ +#define RAX_ITER_SAFE (1<<2)   /* Safe iterator, allows operations while +                                  iterating. But it is slower. */ +typedef struct raxIterator { +    int flags; +    rax *rt;                /* Radix tree we are iterating. */ +    unsigned char *key;     /* The current string. */ +    void *data;             /* Data associated to this key. */ +    size_t key_len;         /* Current key length. */ +    size_t key_max;         /* Max key len the current key buffer can hold. */ +    unsigned char key_static_string[RAX_ITER_STATIC_LEN]; +    raxNode *node;          /* Current node. Only for unsafe iteration. */ +    raxStack stack;         /* Stack used for unsafe iteration. */ +} raxIterator; + +/* A special pointer returned for not found items. */ +extern void *raxNotFound; + +/* Exported API. */ +rax *raxNew(void); +int raxInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old); +int raxTryInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old); +int raxRemove(rax *rax, unsigned char *s, size_t len, void **old); +void *raxFind(rax *rax, unsigned char *s, size_t len); +void raxFree(rax *rax); +void raxFreeWithCallback(rax *rax, void (*free_callback)(void*)); +void raxStart(raxIterator *it, rax *rt); +int raxSeek(raxIterator *it, const char *op, unsigned char *ele, size_t len); +int raxNext(raxIterator *it); +int raxPrev(raxIterator *it); +int raxRandomWalk(raxIterator *it, size_t steps); +int raxCompare(raxIterator *iter, const char *op, unsigned char *key, size_t key_len); +void raxStop(raxIterator *it); +int raxEOF(raxIterator *it); +void raxShow(rax *rax); +uint64_t raxSize(rax *rax); + +#endif @@ -33,8 +33,8 @@  # Pre-version are only available in github  %global upstream_ver 5.0.0 -%global upstream_pre RC1 -%global gh_commit    2ee4a1c9806aab459d05e60751e07d86a4bebd78 +%global upstream_pre RC2 +%global gh_commit    f7209749a632218e5a3fa3171f5711075573af8f  %global gh_short     %(c=%{gh_commit}; echo ${c:0:7})  %global gh_owner     antirez  %global gh_project   redis @@ -42,7 +42,7 @@  # Commit IDs for the (unversioned) redis-doc repository  # https://fedoraproject.org/wiki/Packaging:SourceURL "Commit Revision"  # https://github.com/antirez/redis-doc/commits/master -%global doc_commit 8be19118fbf79be8eceac818b98c27871c9af8f3 +%global doc_commit b9d39b104e0beff9e70b3d738c17d48491d6646a  %global short_doc_commit %(c=%{doc_commit}; echo ${c:0:7})  # %%{rpmmacrodir} not usable on EL-6 @@ -71,6 +71,10 @@ Source8:           %{name}-limit-init  Source9:           macros.%{name}  Source10:          https://github.com/antirez/%{name}-doc/archive/%{doc_commit}/%{name}-doc-%{short_doc_commit}.tar.gz +# See https://github.com/antirez/redis/issues/5022 +Source11:          https://raw.githubusercontent.com/antirez/redis/unstable/src/rax.c +Source12:          https://raw.githubusercontent.com/antirez/redis/unstable/src/rax.h +  # To refresh patches:  # tar xf redis-xxx.tar.gz && cd redis-xxx && git init && git add . && git commit -m "%%{version} baseline"  # git am %%{patches} @@ -81,8 +85,6 @@ Source10:          https://github.com/antirez/%{name}-doc/archive/%{doc_commit}/  Patch0001:         0001-1st-man-pageis-for-redis-cli-redis-benchmark-redis-c.patch  # https://github.com/antirez/redis/pull/3494 - symlink  Patch0002:         0002-install-redis-check-rdb-as-a-symlink-instead-of-dupl.patch -# https://github.com/antirez/redis/pull/4964 - uint64 -Patch0003:         0003-include-stdint.h-for-unit64_t-definition.patch  %if 0%{?with_perftools}  BuildRequires:     gperftools-devel @@ -189,7 +191,8 @@ mv ../%{name}-doc-%{doc_commit} doc  rm -frv deps/jemalloc  %patch0001 -p1  %patch0002 -p1 -%patch0003 -p1 + +cp %{SOURCE11} %{SOURCE12} src/  # Use system jemalloc library  sed -i -e '/cd jemalloc && /d' deps/Makefile @@ -209,6 +212,11 @@ if test "$api" != "%{redis_modules_abi}"; then     exit 1  fi +# Fix for old GCC +%if 0%{?rhel} == 6 +sed -e '/GCC diagnostic/d' -i src/lzf_d.c +%endif +  %if 0%{?with_pandoc}  docs=`find doc -name \*.md | sed -e 's|.md$||g'`  for doc in $docs; do @@ -402,6 +410,14 @@ fi  %changelog +* Thu Jun 14 2018 Remi Collet <remi@remirepo.net> - 5.0.0~RC2-1 +- Redis 5.0 RC2 (4.9.102) - Released Wed Jun 13 12:49:13 CEST 2018 +- Upgrade urgency CRITICAL: This release fixes important security issues. +                      HIGH: This release fixes a SCAN commands family bug. +                  MODERATE: This release fixes a PSYNC2 edge case with expires. +                  MODERATE: Sentinel related fixes. +                       LOW: All the other issues +  * Wed May 30 2018 Remi Collet <remi@remirepo.net> - 5.0.0~RC1-1  - update to 5.0.0-RC1 (4.9.101)  - open https://github.com/antirez/redis/pull/4964 - stdint.h  | 
